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ABSTRACT

A design method is developed for including the effects of para-
meter uncertainties in the design of linear control systems. The
approach taken to this problem may be classified as a special case of
the stochastic control problem. Thus, the formulation is based on the
minimization of the expected value of a quadratic performance index
defined in terms of the system state vector. The uncertainty in the
value of the performance index is then the result of the statistical
nature of the system parameters rather than a random input signal.

It is shown that the expected value of the performance index may be
written as a sum of two terms under the assumption of first order
variations of the system state. The first of these terms expresses
the nominal performance of the system when the system parameters
assume their mean values. The second term represents the effect of
the uncertainties on the expected value of the performance index, and
is interpreted as an index of system sensitivity. The total performance
index is minimized with respect to designated free design parameters

in a fixed configuration. The key to the numerical solution of this
problem lies in using the phase-variable form of the system eguations.
Very efficient numerical technigues are developed for obtaining this
solution using a gradient algorithm. The method is finally applied,
with considerable success, to the design of two flight control systems.
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Chapter 1. Introduction and Summary

1.1 Introduction

It is well known that one of the principal reasons for using
feedback in control systems is to reduce the effects of undesirable
disturbances of various origins on the system performance. The most
common disturbances of this type are unwanted inputs and variations
of the static and dynamic characteristics of the system,.

It is important that the disturbance effects be accounted for
in the design process in addition to achieving desirable response
characteristic to input commands. A number of standard methods are
available for controlling the effects of unwanted input signals,
which may be deterministic or random in nature. Considerable effort
has also been made over the past two decades to develop design
techniques, which make it possible to achieve satisfactory system
performance despite changes or uncertainties in the dynamic charactexr-
istics of the control system or its mathematical description.

This effort has proceeded in two different directions, i.e. towards
adaptive systems on the one hand and insensitive systems on the other,

In the case of adaptive control systems adjustment can be
made in the controller in order to cope with changes in the dynamics
of the controlled member of the system. These adjustments can be
made by detection of changes in the system response or as a function
of changes in some environmental parameters, which affect the system
in a known way. In contrast, the insensitive system should be capable
of achieving satisfactory performance for all anticipated operating
conditions without any adjustments of the controller characteristics.

Deciding which of these two types of systeﬁs,should be used
in a given application may not always be a simple one, since the

differences in the capabilities of the two types have not been

15



clearly identified.[4O]

It is a reasonable assumption, however,
that a control system will always be required to exhibit a certain
degree of insensitivity to small variations of its dynamics,  without the
need for any adjustments of its parameters.

The subject of system sensitivity focuses on the
description and analysis of the effects of variations and inaccuracies
in the system characteristics on its performance. As pointed out in
Reference [42] this is a problem which is peculiar to engineering
design, because of the differences which exist between the mathematical
model and the actual system. Thus, the designer must concern
himself with the influence of inaccurately known system parameters
on the design. Such parameters commonly change their values over a
period of time, although they may be assumed to be invariant in the
system design. Manufacturing tolerances and changes in the operating
environment are also sources of uncertainty which must be considered
in any control system design.

2 number of very useful definitions and technigques have been
developed for the analysis of these effects in linear systems. The
now classical definition of system sensitivity was given in Reference
[1] as the change in the closed-loop transfer function with respect
to changes in the transfer function of the plant. This definition
of system sensitivity can be used to compute the changes in the system
frequency response due to specified changes in the plant. It also
provides a useful relationship between the sensitivity of the frequency
response and the loop gain at any given frequency. An extension of
this definition of multivariable systems is given in Reference [6]..
Design methods for achieving a fregquency response which satisfies
stated tolerances have been déveloped in References [15], [16] and
[25]. The advantage of these freqﬁency domain methods is that their

application is not restricted to small parameter variations. However,



they do reguire that all the system specifications be stated in terms
of the tolerances on the frequency response or be transformable into
that form. Their usefulness, when the transient time response is of
primary interest, is therefore open to question. Difficulties are
also encountered in the case of non-minimum phase plants, when the
relationship between the amplitude and phase of the frequency response
is no longer unique. References [19] and [25] demonstrate the use
of these methods in the design of flight control systems.

The emphasis on root locus techniques in control system design
led to the definition of the closed-loop pole sensitivities as the
derivatives of these poles with respect to the open-loop gain, poles

and zeros.[26][46]

By computing these sensitivities for any given
closed-loop pole it is possible to determine the incremental change in
its location due to variations in the open-loop parameters. These
sensitivities and the associated techniques for their computation
are powerful tools for analyzing the effect of system changes on the
closed~-loop roots. As such they can also be used in the design process
to predict the effects of varying any free design parameters on the
clo - ed-loop behaviour. Techniques for achieving favourable closed~
loop sensitivities have been developed in References [16], [17], and
[20]. Their application is most useful in the case of systems with
relatively few dominant modes whose location in the complex plane can
be specified in terms of bounded areas. By strategically locating
the singularities of the compensating components, the movement of the
dominant system roots due to open-loop changes can be restricted.

The common characteristics of the design methods in the domain
of real and complex frequencies are that high feedback gain is used
in the appropriate frequency band to suppress the effect of changes

which occur in the plant, i.e. in the forward path. It is then
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implicitly assumed that the properties of the compensation are highly
stable compared with the plant, since the high feedback gain has the
£fect of amplifying any changes occurring in that path. The problems
of system stability and noise are considered as constraints, which
determine the character of the compensation at high frequency. The
sensitivity problem is, furthermore, separated from the achievement
of an acceptable nominal response by constraining the response in the
important frequency region. Although these techniques have been
demonstrated to satisfy requirements of the type mentioned above, one
suspects that the method of separating the sensitivity problem from
the remaining system specifications may result in unnecessarily
complicated systems. An excellent review of these techniques is
available in Reference [12].

The increasing importance of state-space and optimal control
techniques has resulted in numerous papers on system sensitivity in
the time domain. Much of this research is based on the use of the
sensitivity functions, which are defined as the derivatives of the
system state variables with respect to the variable system parameter

under consideration.[4l]

The sensitivity functions are therefore
measures of the deviation of the system response from its nominal
due to variations of the corresponding parameter. A number of papers
i:2“M]"[7]’[8]’[J'O]’[Zl]’[zzl’[23]’[36]have appeared in recent years
on the application of a quadratic sensitivity index, defined in terms
of the sensitivity functions, to the optimal design of systems which
are subject to variations of some plant parameters. This sensitivity
index is added to the quadratic performance index, which has been
chosen to optimize the system's nominal response. By minimizing this
sum with respect to the available control inputs it is hoped that the
resulting system design exhibits sensitivity properties, which are

more favourable than would have been the case if the sensitivity index

had not been included. The difficulty arises in solving for the

18



optimum control inputs because of the desire to determine these inputs
in the form of feedbacks of the system state variables. The variations
of these state variables from their nominal:responses then result

in corresponding variations of the feedback control signals. If the
form of these signals remains to be determined, however, the effects of
the control variations on: the system sensitivity functions cannot be
determined.

For this reason, it is necessary to specify the form of the
feedback control, which is usually taken to be a linear feedback of
all the system states and their sensitivity functions with the values
of the gains free to be chosen. Some further assumptions must alsc
be made about the second order effects of the parameter variations on

[371]

the system response. Because of the need to feedback the sensitivity
functions in addition to the system states, the resulting system
design becomes very complex even for a simple system and has in some

cases led to inconclusive results.[36]

This complexity is aveided by
formulating the control as a function of the state variables only,
which has been applied with some success to the design of an attitude
control system of a booster.[151[33]
The basic problem with using the sensitivity functions for the
definition of an index of sensitivity is that a separate set of these
functions must be defined for each variable parameter, which is to be
considered. This means that it is §ery difficult to obtain the numerical
solution for multiple parameter variations.  As a result, only single
parameter variations have been considered in the application of the
methods just described. The choice of the weighting matrix in the
sensitivity index is also open to gquestion, since no systematic
method has been proposed for its selection. Very little effort has

been made to relate the results of using the sensitivity index to

realistic specifications on the time response of the system.



A somewhat different approach to the problem of system sensiti-
vity was proposed in Reference [24], which formulated a sensitivity
index in terms of the mean square deviation of the system response to
changes in a system parameter., The method suffers from the numerical
difficulties encountered in determining the type of compensation
networks that are reguired te minimize the sensitivity index. A
more general approach is taken in Reference [43], which formulates
the problem as an optimal stochastic control problem with changes
in the system parameters described as random: variations. However,
the resulting optimal control is open-loop and cannot, in general,
be put into a feedback form. Parameter identification technigues have
also been applied recently to the problem of uncertain parameters in
non~lineaxr control systems 8].

Finally, the sensitivity problem has been analyzed in terms
of the effect of parameter variations on the value of the performance

[}
i,l,[28],[29]. Sensitivity indices based on the variation of

index
the performance index have been defined in References [3] and [45]

with application to simple control systems. Both of these studies

are preoccupied with the value of the performance index and its
deviation due to the parameter variations, but fail to interpret the
impact on the system time response or how their techniques may be
applied to realistic design problems.

The objective of this thesis is to develop a sensitivity design
method in the time domain, which alleviates .some of the difficulties,
which have been encountered in the studies cited above. In particular,
it is clear that if the solution of practical design problems is to
be attempted it is necessary to develop computational techniques,
which can be applied to high order systems efficiently and in a
straightforward manner. A systematic method for choosing the measure

of sensitivity is also important for the same reasons.

g
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Furthermore, it should be possible to include any number of variable

design parameters and these should not be restricted to parameters

of the system plant. It is also desirable that the complexity of the
system be left to the designer as opposed to a priori specifications

of all feedback loops.

1.2 Problem Approach

The approach which is taken here to the problem of sensitivity
in control system design may be classified as a special case of
stochastic control system design. Thus, it is based on the notion
that the effect of random disturbances on the system performance may
be accounted for by defining the index of performance as the expected
value of the functional which describes the system performance in the
absence of these disturbances. The assumption is made that the.
system 1s described by linear differential equations with coefficients
whose values may be inaccurately known or are'subject to changes,
which are slow relative to the response time of the system. These
coefficients which will be referred to as design parameters, may
therefore be considered to be time invariant and statistically
distributed about some nominal values. In addition, the following

assumptions are made:

(1) the variations of the design parameters have a joint
probability distribution with known first and second
order statistics

(2) the parameter variations are small enough so that the
corresponding deviations of the system response may
be described by a first order approximation

(3) the performance index is a quadratic integral in terms

of the system state vector

21



{4} the configuration of the system is specified a priori
with designated free design parameters, which may be
optimized

{5) the system specifications may be stated in terms of a

desirable time response to a step input

Assumption (2) is necessary in order to make the computational task
tractable and has been used in most of the studies of time domain
sensitivity, which have been reviewed in the course of this work. Its
effect is to allow a certain degree of separation of the equations
describing the nominal system response from the eguations describing
its deviations. The use of the guadratic performance index is justified
on the basis of its widespread acceptance in control system design.
A new dimension has also been added to its usefulness in satisfying
specific response requirements by Reference [31l], which provides a
systematic technique for selecting the state weighting matrix. The
integral square error criterion has also been found to be an effective
tool for this purpose.[47]
Assumption (4) is made in the interest of avoiding the
problems involved in determining the effect of parameter variations
on a yet to be determined control input, in addition to allowing the
designer to limit the complexity of the system. The formulation of
the fixed configuration technique follows closely the development
given in Reference [31], which is based on the use of the state
eguations of the transient response of the closed-loop system. The
assumption that the system response specifications be stated in terms
of a model step response 1s a matter of convenience for determining
the value of the state weighting matrix but does not restrict the
application of the method to any particular choice of this weighting

matrix.



The design method is developed for a single input/output linear
control system, whose closed-loop characteristics are represented by

a transfer function of the form:

s +...+ b,s + b
y(s) _ “m m-1 1 O n<n (1.1)

u(s) n
a_ _ s +...F a;s + a,

The coefficients of the numerator and denominator therefore become

functions of the system design parameters:

a= a (ps

Jwy

b= b (p,

o
-

where a and b contain the coefficients of Equation (1.1l), and p and ¢

are the vector representations of the free and variable design
parameters respectively. Actually, p and § may contain common
elements, which means that free design parameters with uncertainties
or variations about a nominal value can be considered. A simple but
convenient method for handling this case is developed in the body of
the thesis whereby the free design parameter is represented as a
product of its nominal value and a random parameter with the mean
value of unity.

The transfer function of Equation {(l.1) can be transformed
into first order state equations in a number of ways. A particularly

convenient form which is used in this work is given by:

fre
i
e
<
+
e
o

y() = 0 (1.2)

where the first element of y is identical to the system output. The

system matrix is in the phase-variable form, i.e. contains only ones

23



and zeros except for the last row which consists of the denominator
coefficients in Equation (l.1). The input vector, c, is a function

of both the numerator and denominator coefficients. This is sometimes
referred to as the standard observable realization of the transfer
function. The transient response of he system may be obtained from
Eguation (1.2), assuming a unit step input, in the form:

x(0) = x4 (1.3)

~e

» = A X

where x is the difference between y and its steady-state value and
X is a function of the transfer function coefficients. This is the
form used in Reference [32] to represent the system response, although

its development differs somewhat from the one given in this thesis.

1.3 Synthesis of Results

The problem of parameter uncertainty or variation has been
formulated as the minimization of the expected value of a gquadratic

performance index of the form:

j’=f§T9_§dt (1.4)

where Q is a constant positive semi-definite weighting matrix. By
using the assumption about the linearity of the deviations of the
response due to parameter variations, it was shown that this

performance index can be written as the sum of two terms:

F = trace g[/ x, %o dat rjoox sx” dt] (1.5)
0 0
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where x, represents the nominal system response based on the mean
values of the variable design parameters and éx denotes the first
order deviation of the response due to a variation of the variable
design parameters. The first of these terms expresses the nominal
performance of the system. The second term represents the effect
of the parameter variations on the performance and can be interpreted
as an index of system sensitivity. Thus, this formulation relates
the stochastic approach to the technigue of adding a sensitivity index
to the performance index. The form of the sensitivity index is also
completely specified as a function of the total deviation of the system
state due to the simultaneous variation of all the variable design
parameters.

The problem of computing the numerical value of J, given the
first and second order statistics of the variable design parameters,

is very difficult in general. This is so mainly because it is

necessary to obtain the integral of the covariance matrix 6x 6&?

over all time as seen from Eguation (l1.5). In most cases, this would
require the numerical integratioﬁ of the matrix differential eguation
describing the propagation of this matrix in time. The phase-variable
form of the state equations, however, allows this integral to ke
obtained as the solution of n+2 linear algebraic matrix equations
where n is the order of the system. Specifically, these equations

may be written :

A, X+ XA X = 0
—_— — T ——
A, S+ X A, +U (3, + 8%, = 0
(1.6)
T
Z. + A, Z + xX v = 0

T
* - —n% * —
h-1 Zn-1 T-+-7%0%0 T %y Yp-o1

i
1=

it
jo



where X and KX denote the two integral terms in Equation (1.5) and

U is a function of the unknown Z., matrices as indicated. The
remaining terms are all functions of the system coefficients and the
covariance matrix of the variable design parameters. These terms are
evaluataed for the nominal values of these parameters as indicated

by the asterisk.

The first two of these equations form a special case of the
well known Riccatti equation. The n remaining matrix equations
express the effect of the correlation between the various terms of 6x
and da on the solution of the sensitivity index, where fa represents
the variation of the system's characteristic coefficient vector. It
is not clear that these equations can be solved in any convenient
way. A numerical integration technique has typically been used to

[31] This

obtzin the solution of the steady-state Riccatti equation.
would be a prohibitive computational task in this case for any
practical system in view of the number of equations and their
interdependence.

The key to the simplification of the numerical solution of
Equations (1.6) lies in the phase-variable form of the system matrix
A. By writing the first two equations column by column an iterative
relationship between (n-1) of the column vectors of the solution
matrices is obtained. The form of these column vector equations is

imilar to that of the eguations for gi in Eguation (1.6), which was
alszo obtained by taking advantage of the form of the system matrix.
By successive substitution of these iterative expressions, explicit
expressions are obtained for the unknown matrices in Equation (1.6) .
A single matrix inversion of an (nxn) matrix is required to obtain
all these solutions.

Another n+2 matrix eguations are added to the set eof

eguations which must be solved in order to determine the gradient of
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J for any given set of the free design parameters. Their solutions
are obtained in a similar way to those of Equations (1.6). A steepest
descent algorithm is then used to determine the local minimum of J.
This means that 2(n+2) matrix equations containing (nxn) matrices must
be solved for each iteration of the algorithm. Highly efficient
computer programs have beéen developed for this purpose. In most
practical problems the first solution of Equation (1.6) is not
gsufficiently accurate due to round-off errors. A very successful
iterative process has been used to refine the solutions to an

accuracy of better than one part per lOlO using double precision.

The design method described above has been applied to design
examples using the model performance index developed by Rediess.;EEM
The advantage of this index over other quadratic indices is that its
weighting matrix can be determined in a systematic way, once the
transfer function of the desired model regsponse has been chosen. &

new interpretation of this performance index is given in this thesis,

where it is shown that the model performance index may be written as:

o

MPI =/ iz(t) dt
7

-
@

=3
et

where i(t) is the scalar input to an error model describing the
difference in the responses of the system and the reference model
which describes the desired system response. In its original
derivation it is necessary, in deneral, to add a second term to the
model performance index when the system transfer function contains
zeros. This term is defined as a weighted quadratic form of the error
in the initial state as compared with the model's initial state.

Some ambiguity is caused by the arbitrary weighting of this term

relative to the integral of Equation (1.7). A technigque which
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eliminates the need for this second term of the performance index
has been developed using the new interpretation. This is accomplished
by an expansion of the system order and by requiring the transfer
function of the reference model to have a number of excess poles over
zeros which is equal to or smaller than that of thé system,

The basic approach which is taken inkapplying the present

design method may be stated in terms of the following steps:

(1) the configuration is chosen with the objective of
obtaining a satisfactory nominal response

{2} the free design parameters are optimized by determining
the minimum value of the nominal performance index, i.e.
assuming that all the design parameters are known and
invariant

{3} the expected value of the performance index is minimized
for a specified value of the parameter covariance matrix

and the solution compared with the solution of step number (2)

In most cases step number (3) will decrease the value of the sensiti-
vity index when compared with the sensitivity index achieved by step
number {(2). The amount of reduction can be controlled to some extent
by varyving the effect of the uncertainty on the performance index.
This is done most conveniently by scaling the covariance matrix of
the wvarizble parameters, i.e. increasing or decreasing the amount of
uncertainty in the values of these parameters. The relationship between
the individual parameter variations is unaffected by the scaling.

In most practical problems the improvement in the sensitivity
index by the third design step is achieved by some deterioration of
the nominal performance index from that achieved by step number (2).

It ig desgirable that this deterioration be small relative to the

28



change in the sensitivity index in order to achieve an overall
improvement in the system response, which is expressed by the total
change in expected value of the performance index. In some problems,
however, it may be of more importance to reduce the sensitivity of
the system than achieving the desired response characteristics. This
is clearly the case when the variation of a design parameter may result
in an unstable response. If the design which is obtained by step
number (3) is still too sensitive, i.e. has too large deviations for
the specified parameter variations, then a new configuration must be
chosen and the process repeated. It is emphasized that the performance
indices are only tools which may be used to achieve the desired
results. Thus, the system design must always be judged on the basis
of comparison of its response with the original specifications. The
relative changes in the performance indices can, however, be used to
estimate the corresponding changes in the actual system performance.
The sensitivity design method presented here has been applied
to the design of two flight control systems. The first of these is
an attitude control system of a flexible booster whose bending
characteristics are inaccurately known. The nominal design, which
was obtained without any regard for the uncertainties, was found o
be very sensitive to changes in the bending frequency and to a lesser
extent in the bending mode slope. This sensitivity was significantly
reduced by application of the described technique resulting in a
stable response for a much larger range of parameter variations than
achieved by the nominal design. The second system is an attitude
control system of a high performance aircraft with two structural
bending modes included in the vehicle dynamics. The fregquencies of
the bending modes and the dimensional coefficients of the rigid body
dynamics are all described by normal distributions about their mean

values. The nominal design of this system was found to provide
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insufficient damping of the first bending mode. By taking advantage
of the system's sensitivity to changes in the bending frequency it
was found possible to significantly reduce the effect of this mode on
the response. No improvement could be obtained in the system's
gsensitivity to changes in the dimensional coefficients. The nominal
design was found to be inherently insensitive to these changes as
indicated by a small value of the sensitivity index relative to the

nominal performance index.

l.4 Coneclusions

The following conclusions have been reached in this research:

(1) It has been shown that the sensitivity design method,
developed on the basis of minimizing the expected value
of a guadratic performance index, can be used to design
control systems which are less sensitive to uncertainties
in the system parameters than the designs obtained by
minimizing the corresponding deterministic performance
index, using the nominal values of the system parameters.

(2} The expected value of the quadratic performance index
may be written as the sum of two terms. The first of
these represents the nominal system performance and the
second term may be interpreted as an index of system
sensitivity.

{3) The computational difficulties which have been associated
with previous sensitivity design methods have been
alleviated allowing any number of correlated parameter

variations to be handled with ease.
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(4) The improvement in the overall performance of the system
can be rated by a parameter, U, expressing the trade-off
between the change in sensitivity and the change in
nominal performance. A low value of u indicates that
the reduction in sensitivity is achieved at a high cost
in terms of changes in the nominal system performance.
For a large u the opposite holds true.

(5) By computing the sensitivity index corresponding to
individual system parameters the relative effect of
uncertainties in these parameters on the system performance
can be measured. The values of the sensitivity indices
can be used to estimate- the allowable tolerances ©f these

parameters.

1.5 Recommendations for Further Research

It is felt that the sensitivity method presented in this thesis
may be applicable to a much wider range of problems than have been
considered here. A broad investigation of its potential in control
system design would, therefore, be of interest. In the case of the
model performance index, it would be desirable to investigate further
the effect of the model on the resulting solution. It has been
found, for instance, that the sensitivity of the nominal solution may
vary considerably depending on what type of model is used. The
application of the sensitivity method to other gquadratic performance
indices is also an open area for further study.

Finally, the computer programs which have been written in the
course of this work could be developed into a versatile design
package based on the minimization of any desired guadratic performance
index with respect to the free design parameters of a linear, fixed
configuration control system. A relatively moderate effort would be

reguired for this purpose.
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Chapter 2. Control System Sensitivity

2.1 Introduction

The area of system sensitivity, which will be addressed here,
is concerned with the effects of changes in the static and dynamic
characteristics of the system on its response to specified inputs.
These changes can often be described in terms of variations of some
system design parameters, which may represent actual changes in the
system characteristics or inaccuracies in their knowledge. These
variations are typically assumed to be time invariant over the time
interval of interest, with a specified probability distribution.

Some fundamental definitions of system sensitivity have been
developed in the literature in order to systematically analyze the
effects of variations of this type. It is plausible that the definition
of sensitivity which is most useful in each situation depends to a
great extent on the form in which the system performance specifications
are expressed. Accordingly the three basic definitions of system
sensitivity are given in the time domain and in the frequency domain

in terms of real and complex frequencies. These are, respectively:

-~ the sensitivity functions, which are the derivatives
of the system state variables with respect to the
variable design parameter

— the transfer function sensitivity, expressing
differential changes in the system transfer function
due to variations of some design parameters

- the sensitivity of closed-loop poles to changes in

the open-loop static sensitivity, poles and zeros

v

As the objective of this thesis is to develop a practical

method for including the problem of system sensitivity in the design
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process, it is appropriate to consider these definitions of system
sensitivity in some detail. Their application to control system
design will be examined for a single input/output system of the type

shown in Figure 2.1.

u(s) f; v{s)

Gl(s) [o—P1 P (s) L o

A 4

GZ(S)

Figure 2.1. Single input/output system.

The plant, which is to be controlled, is represented by P(s); Gl(s)
and Gzis) are the transfer functions of the controller components. It
is assumed that the parameter changes may occur in any of these
elements.

Not surprisingly, the three types of system sensitivity are

interrelated although the relationship is not necessarily simple.

2,2 Time Domailn Sensitivity

System specifications in the time domain have been emphasized
in recent years by the increasing use of state-space and optimal
control techniques in the design of control systems. Specifications
of this type are basic in the sense that it is by observation of the
time behaviour of the system variables that one judges the ability
of the control system to perform its function. Thus, the common
characteristic of these specifications is that they describe the
desirable behaviour of the system state variables with varying degrees
of complexity. For instance, the system response may only be required

to be stable, or it may be completely prescribed as a function of time.



The sensitivity function has been found to be .a useful tcol for
determining the effect of small parameter variations, or uncertainties,
on the system time response. This function is, in general, defined in
terms of the system state vector, The corresponding state equation
may be obtained from the transfer function of a single input/output

system which is written in the following form:

m
y(s) _ bms + ... F bls + bo -
u(s) n n-1 ‘
s" +a _qs ...+ ags +oa

One possible state-space realization of this transfer function is given

by:

y(t) = A y(e) + cu(t) ; y(0) = 0 (2.2)

where y is an n-dimensional state vector, and A is an nxn system matrix

in the phase variable form:

-a

and the elements of ¢ are given by the following equation:



c., = 0 l1<i<nm

i-1
o; = by L Ay sey

n-m < i <n (2.3)
j=n-m

where it is assumed that m < n, i.e. the system transfer function has
at least one more pole than zeros. This is sometimes referred to as
the standard observable realization of the transfer function given by
Equation (2.1).

The sensitivity function of the state vector with respect to a
single variable parameter, is an n-dimensional vector function defined
bys

dy (t)
g_(t) = TETE (2.4)

where £ denotes the variable parameter. The differential equation
for o(t) is obtained by differentiating Equation (2.2) with respect

o £

., > 2 ’e
cl{t) = A _C_S_(t) + JE/E Z_(t) + SE/T u(t) (2.5)

where it 1s assumed that u(t) is an external input and is, therefore,
not affected by the parameter change. If u(t), on the other hand, is
a function of the system state, as in the case of a closed-loop
feedback, this egquation is:

3 A d ¢

G(t) = A o) + gz () + gp7p wlyt) + ¢ duly, t)

—SE/E (2.6)

In order to compute ¢(t) for this closed-loop system, the relationship

between u(t) and y(t) must, therefore, be known.
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This poses a dilemma, when the objective is to determine the
control input that optimizes a performance index containing g(t). The
difficulty is usually avoided by specifying the functional relatiocnship

of u(t) and the system variables.

2,2.1 Sensitivity Index

The use of terms such as high or low system sensitivity is
rather meaningless, unless a well-defined quantitative measure of
this sensitivity is being referred to.

The sensitivity vector function, o(t), can be used to define a
general quadratic index of the system sensitivity over a specified

time interval, due to changes in a single design parameter:
T T
J, = g~ § ¢ dt (2.7)

where S is an arbitrary positive semi-definite weighting matrix, which
can be chosen consistent with the overall system requirements., When
two or more simultaneous parametér variations are considered, a
sensitivity function corresponding to each parameter must be computed.
A general sensitivity index can then, for example, be defined in

terms of the extended sensitivity vector:
T ! ' T -
ey = L 0] v 05 r eeur O (1) ] (2.8)

which is an ne¢k dimensional vector containing all the elements of the
sensitivity vector functions corresponding to k parameter variations.

The sensitivity index then becomes:

(2.9}

()
0]
<
fa
H
[
fae
fol)
t+
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where S is an (n*k)x(n-k) positive semi-definite matrix.

In order to compute the value of JS as expressed by Equation
(2.9}, it is necessary to solve Equation (2.5) k times, i.e. once for
each parameter variation., This difficulty can be avoided by using
the first order variation of the state in defining the sensitivity
index, instead of the sensitivity functions. The choice of the
welghting matrix is also simplified in this case. This index can be

written in the form:

3 = fﬂ syt s Sy dt (2.10)
0

where S is an nxn weighting matrix and §y(t) is the deviation of the
state due to a specified variation of all the variable parameters.

A sensitivity indéx of this form has the disadvantage of
depending on the actual deviation of the system state rather than its
derivatives. Consequently it must be kept in mind that Js as defined
by Eguation (2.10) depends on the specified parameter variation.

The equation describing 8y (t) is obtained by taking the first

order variation of Equation (2.2):

Sy(t) = A Sy(t) + 8A y(t) + Sc u(t) (2.11)

where u{t) 1s assumed to be an external input, which is independent
of the parameter variations. Thus, only one differential equation
must be solved in order to compute the value of Js’ as given by
Equation (2.10), regardless of the number of parameter variations
involved,

The assumption here is, that a representative set of parameter
variations can be determined for the computation of Sy(t). As an

example, worst case conditions could be used for this purpose. This
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may appear to be a limitation of the sensitivity index defined by
Equation (2.10), but some judgment of the relative variations of
these parameters would also have to be made when choosing the é
weighting matrix in Equation (2.9). When only a single parameter

variation is considered the sensitivity indices of Equations {(2.9)

and (2.10) are actually equivalent, since in this case:

§

oy

Sy (t) = o(t) (2.12)

ol

In many instances, the variations of the parameters can be
described by a statistical distribution, in which case the expected

value of the sensitivity index may be used:

where the bar indicates the ensemble average of the quantity. A
sensitivity index of this type was proposed by Mazer [24], whose
definition is given in terms of the first component of §y(t), which

represents the variation of the output response.
Example 2.1

The characteristics of a sensitivity index of the type given by
Equation (2.9) or (2.10) is demonstrated by a simple example. Consider

the third order closed-loop system shown in Figure 2,2.

u(s) +’ > 284, y’(hs)

s(s+l)(s+2)

Figure 2.2 Third order system
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The open-loop static sensitivity, is taken to be the

Sow’
variable parameter. SoL is also the free design parameter, i.e. its

nominal value can be chosen by the designer. The sensitivity function

of the output is then given by:

o (v) = B (2.13)
OL’ "OL
which can be used in a sensitivity index of the form:
J. = o2 (t) at (2.14)
3 1 , *

0

The input is the unit step function and the integral is taken from
t=0 to infinity. This integral has a finite value as long as the
system response is stable, since the close~loop static sensitivity is

always egqgual to unity and, therefore, lim Gl(t) = 0.
>0

The value of the sensitivity index was computed as a function

of the free design parameter, S as shown in Figure 2.3 for a

oL’
range of values, which give a stable response. Thus, it is seen that
this system has minimum sensitivity to changes in the open-loop static

sensitivity, as defined by Js’ when S, = 0.4, which corresponds to a

OL
damping ratio of £=0.75 of the dominant second order mode. The sensiti-

vity index of Equation (2.14), therefore, defines an absolute minimum
sensitivity of this system with respect to the open-loop static
sensitivity. If the system specifications were only concerned with

this value of S

the deviations of the output due to changes in SOL’ oL

would seem to be a reasonable choice.
The sensitivity function for three values of SOL'iS shown in
Figure 2.4. It is interesting to note, that the maximum value of cl(t),

which is proportional to the maximum deviation of the system output,
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Figure 2.3. Sensitivity index as a function of SOL
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Figure 2.4. Sensitivity functions w.r.t. S,

41



increases monotonically as a function of S Hence, if ¢ were

OoL* 1
max

to be used as an index of sensitivity, the absolute minimum sensitivity

would correspond to S 0, which is not a very meaningful result. For

oL~

S A, ol(t) is seen to combine a relatively small maximum value with

oL~
a fast settling time,

In most applications, however, system sensitivity must be
considered in the context of specific requirements on the system
response. The sensitivity index of the type discussed above is

potentially useful in this case as a component of the performance index

which expresses the overall system performance.

2.3 Transfer Function Sensitivity

In addition to time domain sensitivity, two other definitions
of system sensitivity have been found useful in control system design.

[11]

These are Bode's definition of the transfer function sensitivity,
and the sensitivity of the closed~loop poles and zeros to changes in
the open-loop system characterisﬁics.

The sensitivity of the closed-loop transfer function of the

system shown in Figure (2.1), due to changes in a system design

parameter, can be defined as:

G ac/G
= 2.15
sg aE/E ( )
where G is the closed-loop transfer function given by:
G.P
G = —t (2.16)
l+GlG2P
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Depending on the location of the parameter variation, Sz can be

written as:

G d6/G , aB/P _ G P
g de/p  di/E p &
4G, /G G
sg = dgs;g L= s sgl (2.17)
1761 aest 1
&€ . 48/ dey/6, _ e SGz
£ T W6,/5, " Ta G, °¢

where the three equations correspond to parameter variations in P, Gl
G G
1 2

o7 £ and Sg

parameter variations on their respective open-loop transfer functions.

g, Sg and Sg relate the changes in these open-loop transfer functions
1 2

to the change in the closed-loop transfer function. By differentiation

and G respectively. Sz, S represent the effects of unit
5

of Equation (2.16) with respect to P, G, and G, it is easily shown that:

1 2
G G 1 4
6 - 6 - __1__ (2.18)
P G 1 l+GlG2P
and
sg = -G, ' (2.19)
2

A relationship between these transfer function sensitivities
and the sensitivity function of the system output response can be
obtained by considering the transform of the system output, which is

given by:

y(s) = G(s) u(s) (2.20)
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Differentiating this equation with respect to the variable system
parameter and using the definition of the sensitivity function of the

output, the following expression is obtained:

L _ ady(s) _ G
o{s) = IE/E T SE v (s) (2.21)

G . .
Thus, S, is a transfer function, that relates the sensitivity

£

function to the corresponding output response. If it is assumed that

the system output response is completely specified, then the output
G
£
ﬁoxowitz[17] has shown, that in the case of changes in the plant, Sg

sensitivity function can only be controlled by adjusting S

can be adjusted independent of the closed-loop transfer function only

when both Gl and G2 can be chosen by the designer. In this case

Equation (2.21) can be written:

S

156. 6.9 y(s) (2.22)

o(s) 1+G, G,

= jvw o

Since y(s) is specified and the changes in P as represented

by 8. are, in most cases, not under the control of the system designer,

vy g

only the total open-loop transfer function, G = GlGZP’ is available

OL
for adjusting the sensitivity response. Hence, the open-loop gain
would be chosen as large as possible in the frequency band of the
system output in order to reduce the output sensitivity. This can be
achieved by using large feedback gain at these frequencies. The
forward loop compensation, Gl(s), is then appropriately chosen in
order to achieve the specified closed-loop transfer function.

rrom Equation (2.18) it can be seen that changes, which occur

in the forward loop compensation, have the same effect on system

output as if they had taken place in the plant.' .In this case:
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o(s) = yv(s) (2.23)

1+G. G P

) o™ @

G

The difference here is, that some control of Sgl

and the corresponding
parameter variations may be possible, Similarly, the output sensitivity

to changes in the feedback path can be written:

©2

o(s) = -G G, Sg y(g) (2.24)

It was found desirable to use large values of G2 in order to
reduce the output sensitivity to changes in the forward loop elements,
Equation (2.24) shows, that this has the effect of increasing the
output sensitivity to changes in the feedback path. In order to
achieve overall reduction in the sensitivity of the system output in
this way, it is necessary to require the variations in the feedback
compensation to be small. This point is sometimes all but neglected
in the discussion of control system sensitivity.

Another undesirable effect of large feedback gain is its
amplification of noisy signals. Consider, for instance, the effect

of sensor noise, which enters the system at the feedback level as

shown in Figuré 2.5.

u(s) + f ] y(s)

iy
\ 4
tJ

G, & _ n(s)

Figure 2.5 System with feedback noise



The effect of the noise on the output is expressed by the transfer

function:
G,G,P
y(s) 12 (2.25)
nis) 1+G1G2P

Thus, if the open-loop transfer function, GlGZP' is large in the
frequency band of n(s), there is very little attenuation of the noise,.
Hence, it may be necessary to restrict the bandwidth of the feedback
elements which may conflict with the goal of decreasing system
sensitivity.

A sensitivity index in terms of Sg (jw) can be obtained, for

example, by writing Equation (2.14) in the form:

joo
I, =f o®(t) at = ?T]??f S (30) SF (-30) y (J0) ¥ (~3w) d(Gw)  (2.26)
0 —-joo

where BEguation (2.21) has been used to substitute for o(s). This form
of the sensitivity index may be useful when the transform of the system
output is specified, since Jg is now an explicit function of y(s).

In the discussion of control system sensitivity it has been
found convenient to require the same nominal response to be maintained
in order to give a basis for comparison of designs with different
means of compensation. By so doing, the problem of system sensitivity
is separated from that of achieving the desirable response character-
istics. This is a matter of convenience and may not always be possible
or desirable as, for example, when the designer has limited freedom

in choosing the form and location of the compensating elements.
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2.4 Closed-loop Pole Sensitivity

Closed-loop pole sensitivity has been found to be a useful tool
for analyzing the effects of changes in the open-loop parameters on
the closed-loop response characteristics of the system, This is
especially true for systems with relatively few dominant modes, as is
the case in most flight control systems. The sensitivities of the iEE

closed-loop pole, P; s due to changes in the open-loop static sensitivity,

poles and zeros, are defined as follows:

i 9P;
SS = e R
oL 380./Sor
. op.
s% = % (2.27)
; 3.
3 By
i s
2, 3%
j

where SOL is the open-loop static sensitivity, and ﬁj and ij denote

the ji:-]f—1 open~loop pole and zero, respectively. The following

expressions have been derived for these sensitivities in Reference! 26l
for simple closed-loop poles:
S
OL 1+ GOL _
_ P=P;
i
S
. P. S
53 = = oL (2.28)
J B (pi—pj)
i
: S
25 5. (%,-p.)
J B B!
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A somewhat simpler derivation of these equations is given in Appendix
A of this thesis.

The closed-loop pole sensitivities, are, in general, complex
numbers which can be used to compute the first order variations of
any closed-loop pole due to changes in the open-loop parameters, The
effect of such a variation on the time response depends on the
nominal location of the corresponding closed-loop pole. These sensi-
tivities are, therefore, most useful when this location in the complex
plane is specified. Then it is only necessary to determine if the
poles move too far from these locations to adversely affect the
response, The sensitivity of closed-loop zeros to variations in the
open~loop parameters is easily determined, since the closed-loop
zeros consist of the forward path open-loop zeros, as well as the
open~loop poles of the feedback path.

It is of interest to determine the relationship between the
closed-loop pole sensitivities and the output sensitivity function, o(t).
Assuming, for example, that only the closed-loop poles are affected

by a parameter change, the following relationship can be derived:

9P,
‘ dy (s) pole; T s i
a(s) = = u(s) =[ N ] u(s) (2.29)
de/e - dE7E =1 P 98/%
- 3G .
But N5 can be written as:
=1
m S
S T (1-=)
56 _ 3 | iz % _ s &G (2.30)
5p; P3| B g p; (s-p;) )
.'Tr (l"F)
j=1 J

where Py is assumed to be a distinct pole. If the variable parameter

is taken to be an open—loop pole, §j’ the following expression for
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g(s) is obtained, using Equations (2.27), (2.29) and (2.30):

g(s) = s y(s) (2.31)
i21 Py (s7py

The sensitivity function can, therefore, be obtained as the
summed output of n parallel first order filters driven by the system
output, as shown in Figure 2.6. The poles of these filters are the
system closed-loop poles and their gains are proportional to the
closed-loop pole sensitivities. Thus each of these filters produces
the contribution of a specific closed-loop pole to the output sensiti-
vity function corresponding to an open-loop pole. Similar relationships
can be obtained when the wvariable parameter is an open~loop zero or
the open~loop static sensitivity. Thus, for a variation of the open-

loop zero, Ej:

i
n Ei Sij :
U(S) B lzl pl Té—:—p—;- s Y(S) (2.32)

and in the case of the open-loop static sensitivity, SOL:

i
SsorL

(s-p;) s y(s) (.33

n S
o(s) =| § =%
i=1 Pj

where the closed-loop static sensitivity, S is assumed unaffected.

CL*
It is clear from Figure 2.6, that for a system with specified
closed-loop poles, the only way in which the output sensitivity

function can be influenced is through the closed-loop pole sensitivi-~

ties. Hence, it may be expected that the minimization of some
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sensitivity index, defined in terms of o(t) and its derivatives,
leads to a reduction of the corresponding closed-loop pole sensitivi-
ties. The relative reduction of a closed-loop pole sensitivity is
likely to depend on the importance of the corresponding mode in the
system response.

Finally, Equations(2,21) and (2.31) can be used to relate the
sensitivity of the transfer function to the closed-loop pole sensitivity
due to an open-loop pole variation, which is assumed to affect only

the closed-loop poles:

Sz

“"j‘T*L)" 2.34
1 Py '87Py { }

w

i

1)
Il o113

Similar expressions for the other open-loop parameters are readily

obtained from Equations (2.32) and (2.33).

2.5 System Specifications

In a practical control system design the guestion of system
sensitivity must be considered as it relates to the overall performance
requirements. The definition of sensitivity which is most useful
depends to some extent on the form in which these reguirements are
expressed. For this reason, and for the purpose of later development,
it is appropriate to consider the types of system specifications

which are commonly used in control system design.

2.5.1 Time Domain Specifications

One form of system specifications which has been used very
extensively is the envelope of the system step response of the type
shown in Figure 2.7, which specifies the permissible tolerances of the

system output due to a unit step input.

on
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Figure 2.7. Normalized step response specifications
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The implication is that any system design which has a step
response lying within the specified envelope is satisfactory. Thus
any such response is equally acceptable regardless of how close to or
far from the boundaries it lies. When é fixed set of system parameters
is considered it is, therefore, sufficient to determine a compensation
that results in a satisfactory system response for the given set of
design parameter values. If, on the other hand, some of the system
parameters vary over a range of values, or are not accurately known,
the problem becomes more difficult. It is no longer sufficient that
the design, based on the nominal parameter values, have ‘a satisfactory
response,

The output response may now be required to remain within the
envelope for all possible parameter variations. A different statement
of this specification was suggested in Reference [44] for systems,
whose parameter values are known in terms of their statistical
distribution. In this case the design may be required £o satisfy the
specifications with a stated probability. Thus, any design which
satisfied the response specifications with a probability equal to or
better than the specified probability would be acceptable.
Alternatively, more than a single response envelope could be specified
as shown in Figure 2;7. Varying degrees of acceptability can then be
associated with each envelope or the nominal response may be reguired
to satisfy the most constraining one with less severe requirements on
the off-nominal response.

The question arises how specifications of this type can be
interpreted in terms of requirements on the sensitivity of the
system response. Given any nominal response which satisfies the
specifications, it is clear that any deviations due to parameter

variations must be bounded if the response is to remain within the
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tolerances., The réquirements on the sensitivity of the output,
therefore, depend on both the nominal response and the tolerances as
expressed by the response envelope. Hénce, it is a matter of convenience
to prescribe the nominal response and deal with the sensitivity
problem separately. As has been pointed out, this requires a great
amount of freedom in the design, which may not always be available,
In any event, it is necessary that the sensitivity of the time
response be bounded if the specifications are to be met. The
sensitivity indices discussed in Section 2.2.1 are measures of the
magnitude of the response sensitivity. The effect of using the
guadratic form in these indices is to emphasize the peaks of the
sensitivity function which correspond to the peak deviations of the
response. Lt may be expected, that by controlling the value of a
sensitivity index of this type, the actual deviations of the system

time response can be constrained.

2.5.2 Frequency Response Specifications

The frequency response can be specified by its tolerances at
all freguencies of interest analogous to the specifications in the
time domain. This results in an envelope of all acceptable frequency
responses of the type shown in Figure 2.8. When considering a system
with uncertain design parameters, thé design may be required to satisfy
these specifications with a stated probability or varying degrees of
acceptability may be indicated as shown. The relationship of the
transfer function sensitivity to these specifications is analogous to
the relationship between the sensitivity function and the time response
envelope. Thus, given a nominal frequency response of the system, the
sensitivity of the transfer function must be limited if the specifi-

cations are to be met for all possible parameter variations.
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When non-minimum phase systems are considered, it is necessary
to specify the tolerances of the phase-angle as a function of
frequency in addition to the amplitude response. These specifications
can, in theory, be interpreted in terms of specifications on the system

time response.

2.5.3 Complex Plane Specifications

Specifications of the acceptable closed-loop root locations is
a convenient method for defining the satisfactory response of a system
with relatively few dominant modes. These locations may be given as
bounded areas in the s-plane, which correspond to the time or freguency
response envelopes., Thus, in the case of variable design parameters,
the closed-loop roots could be required to remain within the assigned
areas with a given probability. The relationship of the closed~loop
root sensitivities to these specifications is again dependent on the
nominal system design. Given the nominal locations of the closed-loop
roots, their sensitivities to the appropriate parameter variations
must be small enough so that the roots remain within the specified

areas in the complex plane,

2.6 Sensitivity Design Methods

A number of methods have been proposed for designing control
systems, which satisfy specifications of the type discussed in
Section 2.5 despite changes in some system parameters. Although the
emphasis in this report is on time domain methods, it is of interest
to review the frequency domain and complex plane approaches, which
can be useful in selecting the type of compensation when the configura-

tion of the controller must be chosen.



2,6.,1 Time-Domain Design

Time—~domain design methods commonly require the performance of
the system to be expressed in terms of an index, which is a function
of the system time response. This performance index can sometimes be
regarded as a measure of how well the system is doing relative to a
desired performance, which presumably satisfies all the system
specifications and is achieved when the value of the performance
index goes to zero. The optimum design, relative to the desired
performance, is obtained by minimizing the performance index with
respect to the available control variables.

When considering the design of a system with uncertain or
variable design parameters, the effects of the uncertainties on the
system performance may be taken into account by somehow including
these effects in the performance index of the system in an attempt to
satisfy all the system specifications simultaneously. This can be
done, for instance, by adding a sensitivity index of the type discussed
in Section 2.,2.,1 to the index repfesenting the nominal system
performance., The assumption is, that minimization of this expanded
performance index will reduce the effects of the parameter variations
on the system response, in addition to obtaining a desired nominal
response,

The design problems are usually divided into two categories:

~=- free configuration or optimal control

—- fixed configuraiton or parameter optimization

Considerable effort [ 7], [22], [36] has been spent on studying

the optimization of a quadratic performance index of the form:
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T
J =./r (xT Q x + g? S g+ E? R E) dt {2.35)

where x(t) is the state vector of a linear system with a given initial
condition, ¢(t) is the sensitivity function of the state with respect
to a single variable parameter and u(t) is to be determined so that

J is minimized over the time interval (0,T). The system variables

are described by equations of the form:

x= Ax+Bu ; x(0) = x, © o (2.36)
. OB 9B °u

o= AO+ —XxXx+-—u+B— : o(0) = 0O (2.37)
- 3g 9& 13 -

There are several drawbacks to this approach. First, the
sensitivity function cannot be determined unless the functional
relationship of the control vector, E(t)' to the state is known. The
difficulty is usually avoided by defining u(t) as a linear function
of x and 0, leaving the feedback gains free to be selected.

This makes it possible to obtain explicit equations for g, but u has
now become a function of variables which are unavailable in any form
in the system. The controller must then compute the solutions of
g(t) in real time, which is likely to be an undesirable complexity.
In addition, the improvement in the sensitivity of the response due
to the feedback of ¢ may be insignificant and has been found tc have
a deteriorating effect in some instances[36].

When multiple parameter variations are considered, an equal
numger of sensitivity functions must be added to the performance index,

Since Equation (2.37) must be solved separately for each variable

parameter, the computational task becomes prohibitive. Conseqguently,
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only single parameter variations have been assumed in most of the
studies of the subject. If u is taken to be a function of x only,
the structure of the controller is simplified, since it is no longer
necessary to compute ¢ in real time. The minimization of the
performance index for multiple parameter variations is, however, still
a difficult task. The choice of weighting matrices for the
sensitivity index is an area of some ambiguity, since no systematic
method has been proposed for making this choice,

A somewhat different approach to the problem of parameter

uncertainty was taken by Tuel[43]

who defined the system performance
index, knowing the statistical distribution of the parameters as the

expected value of the quadratic performance index:

T
J = f (x' Qx +u Ru dt (2.38)
0

This formulation of the problem is not limited to small parameter
variations, but the control law which minimizes J cannot, in general,
be put into a feedback form,

The parameter optimization method would appear to be more
promising for a practical control system design including system
sensitivity. The reason is, that many of the analytical and
computational difficulties, which are associated with the optimal
centrol design, can be avoided by specifying the configuration of
the system. Such a method was developed by Mazer[24] based on
the minimization of the mean square value of the system output
deviations with respect to designated system parameters,using a
periodic input and specifying the nominal response of the system.
The computational difficulties in obtaining the optimum parameter

values are considerable, however, for all but low order systems since
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the mean sgquare value must be evaluated, using Parseval's thecrem, as
an integral over all frequencies.

No method of the types discussed can guarantee that specifi-
cations, such as those of Section 2.5.1, will be satisfied. Thus, a
relatively low sensitivity design may not be acceptable unless its
nominal response is also suitably situated with respect to its
tolerance envelope. Conversely, a good nominal response is acceptable
only if the deviations, due to the specified parameter variations, do
not violate the appropriate boundaries. Hence, the minimization of
the performance index is a useful design tool, but the acceptability
of the solution must be judged on the basis of how well it satisfies

the original system specifications.

2.6.2 Freguency Domain Design

The most successful methods for reducing the effects of plant
variations on the system performance have been formulated in terms

of the fregquency response. Horowitz[l7]

developed a method whereby the
open- and closed~-loop transfer functions can be determined such as to
satisfy specifications of the type discussed in Section 2.5.2, assuming
that the compensation in the forward and feedback paths can be chosen

freely. The open-loop transfer function, & unigquely determines

OL'
the sensitivity of the closed-loop frequency response to changes in
the forward path as seen from Equation (2.18)., The advantage of this
technique is that it is not limited to small parameter variations and
it is directly related to the specifications on the frequency response.

This is seen from the fact that the ratio of the closed-loop response

and its nominal value can be expressed as:

1+ G*. (Juw)

G(jw) _ OL
! = - (2.39)
G, () p(jw) .
* E*(jw)+ GSL(jw)
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where P represents any off-nominal frequency response of the plant.
Specifications of the type shown in Figure 2,8 can be used to determine
the extreme values of ]g:] for all frequencies of interest. Knowing
the extreme values of g:, GSL can then be determined so that the
ratio of the closed-loop responses remains within the specified limits.
It then remains to select the proper compensation for realizing GSL’
which must be distributed between the forward and feedback paths in such
a way that the desired closed-loop response, G,, |is achieved.

This method can be used to deal with large changes in the
transfer function of the plant, which need be known only in terms of
the extremes of the frequency response. It is, however, not very
suitable for taking into account changes in the characteristics of the
compensation, whose elements are determined after a suitable open-loop
frequency response has been found. In the case of non-minimum phase
systems, both amplitude and phase response spedifications must be

considered when determining the satisfactory open-loop frequency

response.

2.6.3 Complex Plane Design

The objective of the complex plane methods is to ensure that
the dominant closed-loop roots remain within specified areas in the
complex plane for all possible operating conditions. This means, for
instance, that the movement of the closed~loop poles must somehow be
restricted despite changes in their open-~loop counterparts or the loop
gain. A straightforward method for achieving this goal is to place
compensating zeros close to the desired pole locations, which in
conjunction with high loop. gain ensures that the closed-loop poles
will be close to the zero locations regardless of open-loop changes.
The assumption is then, that the zeros of the compensation are highly

stable which is a part of the price paid for low sensitivity to
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changes in the plant,

If these zeros are not to alter the response characteristics,
they must be placed in the feedback path of the single-loop system,
which eliminates them from the closed-loop transfer function., The
accompanying poles must be at high enough frequency such as to have
a small effect on the system response. The dominant system poles are,
therefore, stabilized by increasing the gain of the feedback path in
the frequency band of the corresponding dominant mode.

Cancellation of the varying open-loop pole may also be
attempted by locating a zero in the forward path. The associated pocle
is then placed in some desirable location. Again, the compensation
must be quite stable and the gain must be large enough for an
effective cancellation despite changes in the pole location. Variable
open-loop zeros can be dealt with in a similar way by placing a pole
in its vicinity, either in the forward or feedback paths. This
approach to the sensitivity problem is useful for determining the
type of compensation to be used in a fixed configuration design in the

time domain.

The complex plane design is mainly concerned with the low-
freqguency dominant modes and constrains the higher frequency modes
to be well damped in order to have a small effect on the system response.
Thus, the sensitivity problem is to some extent separated from the
stability problem, which is considered as a constraint on the design.
This is a convenient approach, but could conceivably result in an
unnecessarily complicated design.

Techniques for determining the locations of the compensation
singularities have been developedIlG][zo] for satisfying specifications

of the type discussed in Section 2.5.3.
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One of the characteristics of the sensitivity methods, which
have been reviewed in this section, is that they are considerably
more complicated than similar methods which assume that all the design
parameters are invariant. In the case of frequency domain methods
the problem of system sensitivity is often separated from the guestion
of system stability and the achievement of a desirable nominal response.
This is a matter of convenience which often requires a great amount
of freedom in the choice of compensation.

The application of time domain methods suffers from the ambiguity
introduced by the arbitrary choice of the sensitivity weighting matrix.
Typically, these methods require the feedback of all system variables,
including the sensitivity functions which must be computed in real
time. The resulting design may be undesirable or impractical because
of the associated complexity. The numerical difficulties in obtaining
the solution have limited the application of these methods to relatively
simple problems.

2 time domain method, which alleviates some of these

difficulties, will be developed in Chapter 3.
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Chapter 3. A Sensitivity Design Method

3.1 Introduction

In this chapter, a method will be developed for the design of a
linear control system in which some of the system parameters are
known only in terms of their statistical distribution. When the design
problem is defined in terms of a specific performance index, a straight-
forward approach consists of minimizing the statistical expectation of
the performance index using the known parameter distribution and
subject to the constraints imposed by the system dynamics. The task
of obtaining a solution to this problem is very difficult, in general,
and some simplifying assumptions are necessary. First it is assumed
that a quadratic performance index expressed in terms of the system
state will be used. The state is extended to include the state of a
reference model. Furthermore, the choice of system configuration will
be made a priori by the designer with certain designated free design
parameters whose values can be chosen to minimize the expectation of
the performance index. The fixed configuration allows the designer
to restrict the complexity of the system in advance, which has been
found to be a very practical design approach. In addition, one avoids
the problems associated with determining the variation of the system
state due to parameter changes, when the form of the control feedback
configuration has not yet been determined. The phase-variable form
of the state equations will be used throughout this thesis because of
significant computational advantages. These eguations are also
convenient for transforming the system transfer functions into state
equations and vice versa. This is especially the case when studying
the effects of different methods of compensation. The design method
will be developed for a single input/output system with the unit step
function as the standard input. Extension to multivariable systems

is straightforward but increases the computational task considerably.
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Pinally, it will be assumed that the parameter variations are such
that the resulting change in the state vector is sufficiently described

by its first order variation.

3.2 System Equations

One possible state-space realization of a general transfer

function:

m m-1

(s) _ bs" + b ;s +.o.0t bls + by
uig) _n -1 (m<n) (3.1)
s +a ;s toootags +oa,
was given in Section 2.2.2 as:
y(t) = A y(t) + cu(t) ; y(0 =0 (3.2)

where y is an n-dimensional state vector whose first element, Yqr is

the system output, A is an nxn matrix in the phase-variable form:

0 1 o ... 0
0 0 1 ... 0
é:
0 0 0 ... 1
T8p  TR1 T8 -es TEp

and ¢ is given by Equation (2.3). For a system whose output reaches
a steady-state as time goes to infinity, it is convenient to use only
the transient part of the response. This is obtained by subtracting

the steady—-state value from the state vector. Thus:



x(t) = y(t) - ¥y (3.3)
where x(t) is the transient response and:

Yeg = lim y (%) (3.4

t+oo

For a unit step input the equation for x(t) can be written in the

homogeneous first order form:

x(t) =& x(t) ; x(0) = x, (3.5)

where the initial condition includes the effects of the system input.
The appropriate form of this initial condition can be determined by
finding the steady-state value of the state from Eguation (3.2) by
setting the derivative equal to zero:

_ZSS+E=-O- (3e6)

since u(t) = 1 for t > 0. Using the phase-variable form of the system
matrix, this equation can be written as:
= -c; l<i<n-1 (3.7a)

y(i+1)Ss

Y oa. . V. = ¢ "
jo1 1 1 ise n (3.7h)

By using Equation (2.3) for cy and substituting from Equation (3.7a},

Yy is obtained from (3.7b):
ss

n-1
agy; -~ ) a, c. (3.8)

. 1 i
ss 1=n-mnm

f
(2
o
t
3
U
Q



since ci=0 for l<i<n-m as shown by Equation (2.3) Thus:

¥y = (3.9)

% . is now readily obtained from Equation (3.3) by setting t=0:

Xy T Tigg (3.10)

zince y(0) = 0. Using Equations (3.7a) and (3.9) and substituting

for ¢ from Equation (2.3) gives the following result:

»
[N
+
H
o
It
o

l<i<n-m (3.11)

|
o
1
1

X(i+l)0 R qn-i+g X(j+l)0 n-m<i<n

where the summation term is zero when n-m>i-l. Since X, is a function
of the numerator coefficients of the transfer function given by Egquation
{3.1), it contains the effects of the system zeros as well as the
input step function. The zeros are in fact represented by the last

m initial condition states, which are referred to as pseudo initial
conditions by Rediess [31l] since they are not actual system initial
conditions. The advantage of using the transient state vector is

that it approaches zero as time increases for a stable system, which
makes it a suitable variable in the integrand of a performance index
defined as an integral over all time. The homogeneous equation is
also simpler from a computational point of view than the equation,
containing the forcing term explicitly.

It should be noted here that the transfer function given by

Eguation (3.1) is the closed-loop transfer function of the cystem.
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The coefficients of its numerator and denominator are, therefore,
known functions of the design parameters and will be written in
vector form as b and a, respectively. The design parameters, which
are of most direct interest are the free design parameters, dencted by
the vector p, and the variable or uncertain parameters, denoted by £.
The free design parameters can be chosen by the designer to satisfy
the system specifications. The variable parameters are assumed to
have some known statistical distribution and may or may not be under
some control of the designer. Thus the § vector may contain one of
the elements of the p vector, for instance, in which case only the
nominal value of that free design parameter can be chosen. A conve-
nient method for dealing with this case will be developed later.
In many cases, however, the variable parameters are completely bevond
direct control of the designer.

The functional relationship between these design parameters and

the closed loop system coefficients is then expressed by:

|
it
|

(Er g)

and b=Db (P &)

3.3 Problem Formulation

In the parameter optimization problem all feedback loops are
closed beforehand, and the type of compensation selected. The system
matrix in Equation (3.5) is, therefore, a function of the specified
free design parameters, as well as the variable parameters, through

its dependence on the coefficients of the characteristic equation,

A= A (p,/§)

The initial conditions are also functions of these design parameters

due to their dependence on the closed-loop system coefficients:
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0 T %o (pr &)

The performance of the system is taken to be represented by a gquadratic

expression in terms of the transient system state vector:

[+

J =f z(t)Tg x(t) dt (3.12)
0

where Q i1s a constant, positive semi-definite weighting matrix. Since
the control input is contained in the homogereous state equation, its
effect is also included in this performance index. The optimum
performance is achieved by minimizing J with respect to the free
design parameters. When all system parameters are known to have some
specified deterministic values, J is also deterministic and the
minimization procedure- is relatively straightfoxrward. If, om-the other
hand, some system parameters are known only in terms of their statis=-
tical distribution, J is no longer deterministic. In this case it is
logical to define the performance index to be the mathematical expec-

tation of J:

] =j[ x(t)TQ x(t) dt (3.13)
0

where the bar represents the ensemble average of the quantities. It
will be assumed that the variable parameters have some statistical
distribution whose first and second order statistics are known. The
nominal operating condition of the system will, furthermore, be chosen

to correspond to the expected values of these parameters:

68



where ¢ is the vector of variable parameters and the asterisk indicates
the nominal value. The deviation of § from its nominal value is then

described by its covariance matrix:

sg 62 = R

where £ is the deviation of § from the nominal value and R is a
known matrix.

It should be mentioned again, that some of the components of p
and ¢ may be common, i.e. any free design parameter may also be a
variable parameter. The nominal value of this parameter can then
be chosen, but the variation about this value is determined by its
variance. It is convenient in this case to write the true value of

the free design parameter as:
P = Pxt

where px is the nominal value, which can be chosen, and £ represents

the variable part of this parameter, whose nominal wvalue is given by:
e = 1

It is indeed, convenient for computational work to write all the
variable parameters in this form, as a product of their nominal values
and a variable part which then takes on the percentage deviation of

the parameter. The system state vector can be written as:

X
°
1
%

x
°
+
[og]
X
°
w
,«—HJ
iy

where xj; is the nominal response obtained from the system eguation

by using the nominal values of the variable parameters. The change
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in the response, §x, is the result of some parameter variation, 6§,

and is described to first order by the equation:
§%x = B,0x + SA:X, ;i 6x(0) = 8x, (3.15)

which is obtained by taking the first order variation of Equation (3.5).
A, is the nominal value of the system matrix and 6A is its variation
from the nominal, due to §E, since A is a function of both £ and the free
design parameters. The initial state vector, Xy is also a function

of g’through‘its dependence -on .the .coefficients of:the transfer

function. Its first order variation, 6§0, can be expressed as:
B§0
SEO = ggf . Sé (3.16)

where the derivative is evaluated for the nominal condition. By taking
the expectation on both sides of Equation (3.15) and interchanging the

order of that operation with the differentiation:

= Ay Kg * _E Xy (3.17)

1%

since A, and x, are both deterministic. Furthermore, by taking the

variation and expected value of A in the phase-variable form:

- e
0 . 0
gg = _9__;;;__9_ (3.18)
T
-8a
! = i
But 6a can be written as:
— sat __ —
a= |==| 8E = 0 => 8A =0 (3.19)
2 3E |, = T = 4 ==

since the derivative is deterministic and 6% = 0 by the choice of the
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nominal parameter values. Similarly, by taking the expected value of

Equation (3.16):

X =2, ox ; 08x5=0 (3.21)

This shows clearly that 5x(t) = D since the equation has no forcing

terms and is at rest initially. The expected value of the system

response is, therefore, identical to the nominal response, X,(t).
The performance index can now be expressed as:

feo]

=f (x,+6%) T Q(x,+6x)dt = (3.22)
0

f°° [x Q x,+8x" Q 6x + 2 x, 0 6x] at
0

Taking expected values on both sides of this equation:

o

=f [EEE Q Xy * 5_>£T Q ox] dt (3.23)
0

using the fact that Sx = 0 and Q and x, are deterministic. Hence,
the expected value of the performance index is a sum of two terms,
the first of which is its nominal value corresponding to the nominal
system parameters. The second term represents the effect of the
uncertainty of the parameter values on J.

It is necessary at this point to address oneself to the problem
of computing the value of J, given the mean values of the variable

parameters as well as their covariance matrix. For this purpose it

is convenient to write J in the form:
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E:tr[_Q_ (f §*§Idt+ﬁ6§6§Tdt)]
0

0

= tr [9_ (X + @] (3.24)

where tr denotes the trace of the quantities and X and §X are defined as:

o

J[ §*§E dt
0

o .
Jf 5&_5x dt
0 nid

The equations for X and §X must now be obtained. Using Equation (3.5)

[
It

o
1<
[l

the following equation can be obtained for the integrand of X:

d T °T = T T T T
Fo(HaXi) = XXy b XX = XXy By o+ AX.X, (3.25)

Integrating this equation on both sides from t=0 to infinity, gives:

Xoxn (£5%) = XXy (£0) = X Ay + A,X | (3.26)
uging the definition of X. Since §*(t) is the solution of a linear
homogeneous differential equation, its value approaches zero as t-«

for a stable system. Thus, §*§E(w) = 0 and Equation (3.26) becomes:

BX & X AL £ X =0 (3.27)
where
- T
Xy = X (0) x,(0)
%, {0) is the initial condition of the nominal state vector and is,

therefore, known. The equation for 8X can be obtained in a similar

manner. Using Equation (3.15) the following relationship is obtained:



Gé 6§T + 8x

il

d T
EE(GE §x™)

it

A,.6x 6x7 + A x, 0% + OxSx Ay + 6% x, A

%~

T,T T T (3.28)

Integrating on both sides of this equation over all time gives:

Sx6xT (t=w) - Sx8x’ (£=0) =

where Y is defined as:

* T
X.”J[ X, 6x” dt
0

Since lim x(t)=0 for a stable

B.SX + 0X Ap + SBY + Y'OAT (3.29)

system, the variation of the state also

goes t§+:ero at infinity, tiﬁ 6x(t)=0. Equation (3.29) then becomes:
A, SX + X By + 6X, + 6AY + Y oAT = 0 (3.30)
where 6&0 is defined by:
8%, = 6x(0)8x" (0) = 8x 8%y

6&0 can be computed by using Egquation (3.16), but Y remains to be

determined.

is obtained:

S, 6xT) =x,6x" + x,6%"

By using Eguations

(3.5) and (3.15) the following equation

= 2 x,0x50 + x,0x Bf + KEG6RT  (3.31)
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which by integration over all time becomes:

x, 6xT(t==) - x, 6x(t=0) = A,Y + Y AL + X 6AT (3.32)
Since lim i(t)=9, we finally obtain:
+>o0
T T
AyY + Y By + X OAT + ¥Yo= 0 (3.33)

where Y. is given by:

0

x,(0) 8x"(0)

[

With ¢A known and X obtained as a solution of Egquation (3.27), Y can
be found as the solution to this equation. This solution is then used
in Equation (3.30) to solve for 6X. In order to find the mean value
of J, however, it is necessary to determine the mean value of ¢§X as
seen from Equation (3.24). Taking the expected value of the terms in

Eguation (3.30) gives:

XAl + FX, 4+ SAT + YT saT = 0 (3.34)

g

EA

I3
4

SXO can be obtained by using its definition and Equation (3.16):

r T
3x ax X
= =0 T 0 =0 X,
_— — 3.35
02—{0 8§ Sé 6-{; 9E If)_ﬁ_ B 5E ( )
% * - % - T A%
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The guantity 3@? and its transpose present a problem, however, since &2
and Y are both functions of the variable parameters, which results in
their being correlated. One possible method for obtaining the expected
value of this matrix product is to premultiply Equation (3.33) by 6Aa

and take the expected value of each term:

SR A, + SE L A, + 6A X 6aT + BT, =0 (

(o8
°
a2
o
e

The last two terms on the left hand side can be computed from
the parameter covariance matrix, since X is a deterministic matrix.
The equation can then, in theory, be solved in terms of the elementary
products which make up the components of the product 3@?. This would
be a very difficult task at best and a much simpler method can be
developed by taking advantage of the form of the syétem matrix and

its variation. The product of SA and Y can then be written as:

1 Lol 0 een. 0

0 ... 0 : :

: bl : :

=1 ‘ | S : '
BY = o ... 0. ZO:le”’i'Y.n_l o : (3.37)
{
T
-3a ‘ T T
L B JL b i A 6a"yy-- 6a"y, _q

where Y has been written in terms of its column vectors. Thus, it is

only necessary to find the values of Sg?yi for 0<i<n-1 in order to

completely determine SAY. This can be done by expanding Equation (3.33),

considering each of its columns separately, which results in n vector

equations:

. 0

. . )

é*y_n_2 + Xn 1 + (5X(n__l) OEO = __0_ (3.38)
* %

Ba¥n-1 #n-1¥n-1 T T3 * anoio T 62 =10



The first (n-1l) equations are iterative and make it possible to
determine the it column vector of Y in terms of its (i—l)-s—E column
vector.

"Premultiplying these equations by 65? and taking the expected
value yields n scalar equations which are not sufficient in order to

solve for the n desired scalar products 6§Tzi, since these equations

contain other product terms of the form éaiyj. One can, however,

express the inner product of da and Y, as the trace of their outer

product:

g;?;; = tr [ Xidg? ] (3.39)

The following iterative relationship is then obtained by postmultiplying

the first (n-1l) equations of (3.38) by ag? and taking expected values:

T ,
. * — -
zi + A*Zi—l + xviog = 0 0<i<n-1 (3.40)

where

= y. da (3.41)

and v. is the (i+1)5% column vector of the matrix V, which is defined

asgs

T
—7. |2 L=
y_ = 62 63{_ = @ . _R_ -s—:— . (3.42)

The last equation of (3.38) becomes, in a similar way:

* *
—...—aa Z. + x VT -

Zo * 2y Y1 (3.43)

BuZno1 T 8p-1fn-1

>
1=

|
o
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where

(3.44;

1=
1]
O
[
O
|
i
|
QJI Q>
| |

By solving Equations (3.40) and (3.43) it is, therefore, possible to
determine all the terms necessary for solving Equation (3.34), which

can now be written as follows:

A% + 6X Ay = - [U + 8g,] (3.45)
where
o . . . 0 trz,
. trz;
ug=- : : . (3.486)
o <. .. 0 trz o
trz, tr_Z_l..tr_Z__n_2 2tr_Z_n__l

The value of the performance index, J, can therefore be computed by
solving a series of algebraic matrix equations. The task of finding
the minimum value of J with respect to the design parameters is

discussed in detail in the next chapter.

3.3.1 Discussion of Performance Index

The approach taken in this section is basically that of the
stochastic control problem where the uncertainty is due to the
statistical nature of some system parameters instead of random noise,

which enters the system as an input. Under the assumption of first



order variations the performance index separates into two terms as

seen from Equation (3.23). The first term is the value of the per-
formance index when the system parameters are deterministic and take
on their nominal values. The second term represents the effect of

the parameter variations on the expected value of the performance
index. It is of the same form as the sensitivity index defined by
Eguation (2.10) in the previous chapter. Using the expected value

of the performance index thus leads to a similar expression as given
by Eguation (2.35) where a sensitivity index is added to the quadratic
performance index representing the nominal system performance. The
welighting matrix of the sensitivity index has, furthermore, been
determined as being equal to the weighting matrix of the nominal state.
This does not preclude the possibility of using a different weighting
matrix for the sensitivity index, since in some applications it may

be desirable to change the relative importance of the various state de -~
viations, In addition it could also be of interest to change the
relative weighting of the sensitivity term with respect to the

nominal term. The performance index may then be written as:

]|

<« Q0 e
= /. %~ Q.x, 4t + ?7~ GxTQ §x dt (3.47)
. Zx <1l bl Xy Rl
0 0

where Q, and Q, are not necessarily equal and ¢ is an arbitrary
weighting constant. Changihg the value of ¢ is, however, completely
eguivalent to scaling the covariance matrix of the variable parameters

in the same proportion, since:

X, T

X
X T
EXP S e 6ESE 3E |,

(3.438)
where the derivatives are evaluated on the nominal response trajectory.

S0 putting more emphasis on the sensitivity index is eguivalent to

increasing the spread of the joint distribution of the variable
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parameters.

The approach taken to the sensitivity problem in this thesis ties
together the stochastic control approach and the technigue of adding
an index of sensitivity to the performance index used to express the
nominal performance. In the past, both of these methods have
suffered from the difficulties associated with obtaining a numerical
solution to practical problems, especially when more than one system
parameter is involved. The formulation given here alleviates these
difficulties to a great extent as will be seen in the following
chapter. This is largely possible due to the convenient form of the
equations when the state equation is written in the phase-variable

form.

3.4 Necessary Conditions

In the previous section the following equations were derived for
determining the performance index as defined by the gquadratic form in

the system state:

J = tr [g[g{_ +ag]j!

B,X + XAy +X, = 0

—_ — T m £ 1
B, X + 6XA, + U + 6%y = 0 (3.49)
2., + A,Z + x* v? =0 0<i<n=-1
23 T RkZj) T Xy Yy T2 5
A Z -a* _Z - .e=a*Z + x* VT - X W =20
—%-n-1 “n-1=n-1 *°° T0=0 =0 ~n-1 = —

where all system coefficients are known as functions of the variable

parameters as well as the free design parameters.f

TFrom here on all system coefficients, as well as functions and
derivatives of these coefficients, will be evaluated using nominal
values of the variable parameters. The (*) notation will therefore
be dropped. v



The necessary condition for J to be at a local minimum for specified
valuesg of the design parameters is that its variation with respect to
these parameters be zero to first order. A standard method for
obtaining the variation of a functional in the presence of contraining
eguations is to add the constraints to the functional by the use of

Lagrange multipliers. Thus the performance index is augmented to give:

T = ex{ox + OFF + By AX + XAT + %] + B,[ASE + 6ZAT + U + §X]

n-1
T
+izl Ay 185 + 2%, 0+ xpVy gl H A (B2 ) R, g2, T
—a 7. + x.vr - XW]1 (3.50)
020 T Zp¥p-1 T 28y .

where gly 32, and Ai are nxn matrices of Lagrange multipliers. The
traces of the matrix products, which are added to the performance

index, are sufficient to constrain each element of the matrix equations.
This is seen from the fact that the trace of a matrix product can be
written as:

n o

tr [EM] = 2 ) pij mji
i=1 4=1

where the right hand side consists of the sum of simple products in
terms of the elements of P and M with no common factors in any two
product terms. This is just the type of expression needed to constrain
each element of M to zero.

The variation with respect to the free design parameters will be
denoted by g in order to distinguish it from the variation due to
the variable system parameters, which is indicated by 6. The necessary
conditions are determined by requiring the variation of J with respect

to each of the quantities, X, Gz and 51' to be equal to zero. Thus,
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considering the effect on J due to a variation of X we get:
8F = tr [[g + (BjA + z_\Tgl) - WA ] 6&] = 0 (3.51)
where the following matrix property has been used.

tr [AB] = tr[Bal

where AB is a square matrix. The following equation is then obtained

~

for P since 68X is, in general, non-zero:

ll

T - -
PjA+AR) =WA -0 (3.52)

The variation with respect to 68X is, similarly:

8J = tr [[g + (PLA + éT_lf_z)] a(ag)] = 0 (3.53)
which results in the equation for Ez‘
P.A + ATP. = -Q (3.54)
S L = v

In order to find the variations due to the Z; matrices it is necessary
to rewrite the term tr(gzg) in Equation (3.50) since U is a function
of the Ei matrices as expressed by Equation (3.46). 22 is a symmetric

matrix as can be seen by transposing Equation (3.60) and using the

fact that Q is symmetric. The product of P, and U can then be written:

2
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0 ... 0 tx2z
Py; Pip +++ Pip 0
. : ter
P12 Pa2 ++- Pop
U=~ | . 0 ... © :
pln pzn . e pnn trz0 trzi...ztrzn

The trace of this product can then be expressed as:

n n

= o t Z = e
tr (?_22) 2 Z Pin r i=1 2 . 1 tx (pinzi-—l)
i=1 i=1

The variation of J with respect to 2, is then:

87 = tr [{—2pln5 + AyA - agh ] ago] = 0

which results in the following relationship between Al and An:

-1

Taking the variation with respect to zi—l for 1l<i<n gives:

0 = tr [[‘2pin£ REES TS S R PRy GZi—lJ =0

which then leads to the equation:

Aig v AR -3 Ay - 2py 0= 0 l<iza

Equations (3.58) and (3.60) can now be used to solve for all the

matrices.

-

j=

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)



Finally it remains to determine the variation of J due to all
the terms which are explicit functions of the free design parameters.
These are all the terms containing the system coefficients and initial
conditions or perturbations of these with respect to the variable
system parameters. Thus:

T

_ T N N T, 5 aaT
§F = tr [(gl + 27) xeaT + Byé6x, + (B, + P)TX 6a

n n
S ET T, T T e, T P
tRSX,) ¢ DL AjEy 1 6AT 4 ] A (Sxpvy g+ xp0vy )
i=1 i=1
n
-1 3 4 Sa. 1 - A_nzsvl] =0 (3.61)
i=1

where some of the terms have been rearranged using the matrix identity:

tr(ap) = tr(8’a’) = tr(a’s)
It is necessary to express the variations of the guantities in
Equation (3.61) in terms of the first order variation of the free

' design parameters, $p. Using the definition of A, the following

expression is. obtained:
9a ~ T
A" = -dan” = - B Sp n (3.62)

where D? is an n-dimensional vector defined by:

n = [ 0,0,...,0,1 ]

~

Thus, all the terms in 6J containing 6A can be rearranged in the



following manner:

- ?a | ~
T T -
Furthermore, using the definition of 6§0 as given in Section 3.3:
- Ix ~ ~ ax. |T
_ =0 T T =0
5§0 = [séf] 52 X, + EQGE. [55—] (3.64)
The corresponding term in 8J can then be rearranged:

- ax ~
, T T =0
tr[ElGE'OJ = EO [Bl + E—l] [ g‘é—— :l 5E : (3.65)

The following equations are obtained in a similar fashion:

~ 90X ~
T T .
tr[l\_i 6%, 31—1] =viad [5p | e (3.66)
paks U ror | Yi-1| ¥
r[ﬁiﬁoai’-i—l} = Xo by vy = Xpdy lsp | SR (3.67)
~ aai—l ~
[Anzl lsai_l] = tr[gngi_l] S sp (3.68)

.th

Using the definition of Vi1’ its derivative with respect to the j—

parameter can be written:

Ixs - OX . 2
ii; - “[apja_a_] [%J * [a lOJ R [az-%g] (3-69)

fovy

which is the jEE column of the derivative matrix in Equation (3.67).
The terms containing EZO and W are somewhat more complicated. Using

the expression for Sgo given by Equation (3.64):
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- [aﬁo] - 2K, - |-
tr [E_é(éxk)] = tr|P | Spys +...F [-———— Sp (3.69)
2 =0 2 3py 1 Bpk k
The variation due to the jEll parameter can then be written:

2%y 0% % | ”
o= . (3.
tr | P, apj cSpj tr]2p, apja_e::_ R 5T cSp3 (3.70)

where the fact that P, is symmetric has been used.

The total variation of this term can then be written:

tr ,[52 5(‘5‘%0)} = e 6p (3.71)

-}
oW - 2%a sa | T |-~
tr A X ggiﬁpi = tr [Aﬁ.’i"‘&n]. 5D, 0L Rl sz L Spy
. . (3.72)

and ,

tr [gg X sv_qJ = £7 §p (3.73)
where

. 3%a 3a | T
g, = [-AnE + XA, ] 3p; 0% R 3L

Collecting all the above terms, the variation of J can be now be
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written in the form:

n
—_ | T o T T
6J = n I:(Bl+gl) X+ 2P, 0X + ) Azl g
i=1
n
3a
T T — T T
+ x_ [P+P]] [-5;]+3<_0 LA [
i=1
n
T
* D ovig 4y
i=1 i=1
= 0

The expression in the brackets must be equal to zero for this

equation to hold.

of J are summarized below:
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=0

0 0<i<n-1

-1 " XW =0
)

2p. I = 0 l<i<n
in— -

All the necessary conditions for a local minimum



A - agh - 2p; I= 0

=1= 0
n
2a
T T == T,T —
n [(21+13_1> X+ 2B, 8X + ] AjZi 4 ] [ ;é]
i-1 * ‘
sa n v
_ T T T T i-1
Xy [B37E] [ ) ] X LA [ 5p }
i=1
n - n
9x ER
T 1 =0 i-1 T, T _
i=1 i-1

The set of free design parameters which satisfies all these eguaticns
determines a local minimum of the performance index J. The method for
numerically obtaining this. solution is discussed in Chapter 4.

The next two sections are devoted to the discussion of two specific
performance indices which have been found useful in system design.
The first of these has the same form as the performance index which
has been used in the previous sections, with a systematic procedure
for determining the weighting matrix. The second performance index is
the well-known integral sguare error criterion (ISE), which is defined
in terms of the error response of the system as compared with a
reference model response. The ISE thus contains the model response
explicitly and this requires that the necessary conditions be augmented.

3.5 The Model Performance Index

The model performance index was formulated by Rediess [31] and
gives a systematic method for determining the state weighting matrix
in the guadratic performance index commonly used for optimizing the
design of linear feedback control systems. When the performance index
is minimized, the system response becomes close to or identical to
that of a specified model fesponse. Moreover, the model's time response

is not included explicitly in the cost function. The unit step



function is used as a standard input, although other inputs could be
used. The original derivation of the model performance index given

in Reference [31l] is based on a geometrical interpretation of the
gystem state equation in the phase-variable form. A somewhat different
interpretation will be given in this section, based on the error state
eqguations of the system where the error state is defined as the

difference between the system state and the state of a reference model.

3.5.1 8ystem Error Egquation

The system transient response is described by the equations

derived in Section 3.2:

[

= ax; x(0) = x, (3.5)
where the system matrix is in the phase-variable form and the initial
condition vector contains the effects of the step response and system

zeros. The desired system response is taken to be described by a

model state equation of the same form:

Y
i}
>
[

;o x(0) = x, (3.76)

where (7)) refers to the model. Assuming that the model is of the

same order as the system, the error equation can be written:

o>
w
i
s
>
»
+
>
1y
-
>
b
)
]

Ax (3.77)

>
LS
I
7
]
>
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The homogeneous part of the egquation is identical to the model eqguation
with the model state replaced by the error state. The forcing term is
expressed only in terms of the system state. The error responsSe can
then be cobtained as shown in Figure 3.1.

In a practical situation, however, the model is commonly of a
lower order than the system order. The same error equation can be
used in this case but the model equation must be augmented such as to
be compatible with the system equation. This can be done by observing
the fact that the model’'s state space is a subspace of the system state
space. The model equation in n-~dimensional space can be written as:

foor — s

Xq 0 1 0 e o 0 0 o 0 xl XlO
0 0 1 . 0 0 .. 0
2 N ~
xz —ao -ul e ~u2_l 0 e 0 xz N Xy
Xa= 0 (2.78)

2 ~ =0

X041 0 oo 0 oo« 0 x2+l 0

Xn 0 oo 0 T aee 0 xn 0

where 2 is the order of the model (2<n) and the o's denote its
characteristic coefficients. Thus, the dimension of the model eqguation
has been made egual to the system order by the addition of zeros to

the model matrix. The state vector has also beeh augmented to nEg

dimension but it may be noted that the last (n-L) states are

identically zero for all time.
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This augmented model equation can then be used in the error equation
(3.77). It is clear that the last (n-%) error states are egual to the

corresponding system state variables:

Ax, = X. 2<i<n

since the lagst (n-!) model states are zero.
The error state equation will now be used to give a simple
interpretation of the model performance index. First, only systems

and models without zeros in their transfer function will be considered.

3.5.2 Systems without Zeros

It can be seen from the expression for the initial conditions
Equation (3.11), that for systems which have no zeros in the transfer
function, all but the first initial state are zero, since in this
case m=0. This state is, furthermore, equal to the negative of the
system's static sensitivity. Assuming that the system and model have
equal static sensitivities, this initial error state is alsoc zero.
This assumption is reasonable, since in most practical situations the
steady-state output error, due to a unit step input, will be reguired
to be zero.

The development differs slightly depending on whether the
dimension of the model, %, is less than or equal to the system's
dimension.

Consider first the case where 2= n. The error equation, written

out in detailed form, is in this case:

21



0 .ae 0
Ax, 0 1 0 0...0 Axl‘7 [«
1 0 .. 1
A%z o 0 1 0...0 Ax, Xoy
- : Al :
. 0 s e 1 . ° .
Axp —aO —al es e —an—l Axn 0 . e 0 X
o Eadiland o aad -
(uo—ao)(al—al)...(an_l—an_l)

(3.79)

where ET = (agsays-..,a,_;) and g? = (ags0ys...00, ;) are the coeffi-
cients of the system's and the model's characteristic equations,
respectively.

There are two potenﬁial sources of excitation for this equation
as seen in Figure 3.1. First, any initial error will result in an
error response. For systems without zeros in the transfer function
this effect does not have to be considered, since the initial error

state is zero as seen above. The second source is the scalar input:

ie) = ] (e;ma) x, = (a-a)T x (3.80)

which is the only forcing term in Equation (3.79).

Since the model coefficient matrix é is a specified constant matrix
the error response can only be influenced by changing the input to the
equations. It is clear, for instance, that the error response is equal
to zero for all time when i(t) = 0 as there is no disturbance to the
error state equation in this case. Thus one obvious way of reducing
the error between the response of the system and the model is to

minimize some measure of the input excitation to the error equations

which, fortunately, happens to be a scalar when the equations are
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written in the phase-variable form. One such measure is the time

integral over all time of the square of this input:

oo

J = f }_{_T(c_:c_-g) (E—E)T x dt 3.81)
0

The weighting matrix in the quadratic cost functional has thus been

determined as:

Q= (oma)(a-a)T (2 = n) (3.82)

This cost function can then be minimized with respect to the specified
design parameters. Note, that Q is a function of a when %=n, which
makes it a function of the system design parameters.

Consider now the case where the model's order is less than that
of the system, i.e. &<n. The model equations are augmented and the

error state equation becomes:

Axl 0 1 0...0 O0....0 Axl 0 0 ¢ao O 0 ... 0O Xl
. 0 1 . - o ... 0 0 ... 0 :
Ax ol =|-agy =0y =Gy 1 B....0 1A 1+ ap .. ap_q 1 0...0 X,
) 0 ... 0 0....0]0| . 0 01...0
) : s 0 00 1
'AXE i 0 o e 0 0....0_-qu_ :ao --al cee —an*¥”.%n~
{(3.83)

It may be observed from the homogeneous part of this equation that the
higher order error states, AX2+1"'AXn’ do not affect the lower ocrder
error response directly. In fact the only excitation of the first 2

error states 1s the scalar input:
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2-1
~T

ife) = ) (a;x;) + %, = & x (3.84)
i=0

where & is an n-dimensional vector defined by:
- = [ao,...,uz_l,l,o,...,ol

I+ is seen from Equation (3.83) that the responses of the first L states
are identical for the system and the model when i(t) = 0, since in

this case the firs£ % error states are undisturbed. Actually this
could only occur when the last (n-{) system states are zero for all
time and therefore identical to the corresponding model states.

Because the model, in reality, only specifies the desired response
of the first % state variables of the system, there is no need to
constrain the response of the last n-% states except for its influence
on the lower order states. This influence is represented by the term
in the input excitation to the lower order error response.

2+1
The cost function is now formed as before:

0

and the state variable weighting matrix is:

& x dt ’ (3.85)

[fsX

ar (%<n) (3.86)

I=13

9_:

It has been shown above that the model performance index can be
interpreted as a quadratic measure of the scalar forcing term of the
error state eqguation. It is interesting to note that all the terms
making up this input term are dimensionally consistent. The units of

i{%) must be the same as those of the derivative of the QEE error




state as can be seen from Equation (3.83). If this input 1s regarded
as generalized "power", the model performance index is a measure of
the "energy" driving the error egquation.

The sensitivity term in the expected value of J can also be given
a simple interpretation in terms of the input to:the error model when
2<n. The variation of i(t) can be obtained in this case from Equation
(3.84) as:

§i(t) = 8% ox (3.87)

Using éiz(t) as an integrand in a sensitivity index gives:

oo 0 4
jf si(t) at =f sxT 3 &  ox dt =fa§T Q 8x dt (3.88)
0 0 0

whose expected value is identical to the second term of Equation (3.23).

3.5.3 Systems with Zeros

The effect of zeros in the transfer function is represented by
the last m initial states of the transient response as is seen from
Equation (3.11). The corresponding initial error states are therefore
non-zero, in general, and must be considered as a disturbance to the
error eguation in addition to the excitation input term. Rediess [31]
solved th?s problem by adding a quadratic term in the initial error
state to the performance index, such that:

[>]
T T
J = Ax. W Ax,. + X" Q x dt (3.89)
20 2 o) ES
0

In this way both sources of excitation to the error equation have been

included in the performance index which is then minimized as before.
The weighting matrix, W, is a positive definite matrix which determines

the relative importance of the initial error states as well as the
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weighting of this term relative to the integral term. Within the
constraint of being positive definite,its choice is arbitrary. This
presents a difficulty since there is no simple method for determining
the relative effects of these terms.

A different approach will be taken here which eliminates the need
for including the initial error states in the performance index at the
cost of some restrictions in the choice of the model representing the
desirable response. It is convenient to use the transfer functions
of the system and the model for this derivation rather than their
state-gpace realizations.

I+ was seen in the previous subsection that the error response of
systems without transfer zeros can be obtained by passing an appropriate
input signal through the model equations. Thus, it is assumed that
the error response of any system can be obtained as shown in Figure 3.2.
The output error Ay is equal to the corresponding transient error Ax,
since the steady-state outputs of the system and the model are taken to

be eqgual.

i(s) Ay (s)
—_—
G(s) >
Figure 3.2 Error Response

The error response can be written as:

Ay (s) = [G(s) - G(s)] u(s) (3.90)

where G{s) and G{(s) are the transfer functions of the system and the
model, respectively, and u(s) is the transform of the step input in

this case. From Figure (3.2) we have that:
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Ay (s) = E%(S) i(s) {

3.91)
These two equations give the following expression for i(s):
i(s) = {:Siil - 1] u(s) (3.92)
G(s)

In the case of systems and models without zero. i(s) can be written as:

) -1

i(s) = (s tog 48 +o..tagstog) y(s) - u(s) {3.93)

i
Bo

where the transfer function of the model, G(s), is given by:

G(s) = : (3.94)
s” 4 4, 48 +.e..+ Q.5 + 0

Transforming i(s) into the time domain gives:
. -1 e ' (2-1) (2) _
i(t) = BO [qoy(t) +aly(t) +...+a2_ly () + vy (t)] 1 (3.958)

since u{t) is the unit step function and the system is at rest initially.

From Equation (3.1) we have that for a stable system:

b0
lim y(t) = —
g

£+

which in turn can be used to show that:

li
o

%
lim i(t) = z= 7 -1
0

t>oo

as all the derivatives of y(t) must go to zero in steady-state and
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2
o

= 39 = 1 by the assumption that the static sensitivities of the system
0 "0
and model are equal. Egquation (3.95) can then be written in terms of

the transient response as:

xM e+ D g1 (3.96)

. _ 1 .
i(t) = gg [aox(t) + alx(t) +oat Gg_1

For %<n, i.e. a model of lower order than the system, i(t) can be
written in the form:

~T

i(e) = a" x(t) (3.97)

1
Bo

where x{t) is the system state vector as described by Equation (3.3).
This expression for i(t) is identical to the forcing term in the error
equation (3.83) except fér the division by the constant, BO. The

performance index for 2<n is then defined by:
x(t) dt (3.98)

which is identical to the performance index as defined by Equation

.85), except for the constant factor.

L3

(

Consider now the case when the model is of the same order as the
system, i.e. 2=n. Eguation (3.96) can be written in terms of the

system state vector by substituting the following expression for x(n)(t):

x(n)(t) =x_ = -a X (3.99)
which is obtained from the state equation (3.5)., 1i(t) then becomes:

i(t) = &= (e-a’x (3.100)




which is proportional to the input to the error egquation (3.79) for
this case. The resulting performance index is also equivalent to that
of Equation (3.81). This approach, therefore, leads to the same
result as was obtained in Section 3.5.2 for systems without zeros.
Consider now the case of systems and equations with zeros in

their transfer functions. Equation (3.92) can now be written as:

-1

L m
sTHa) s +.ootaysta b s +...+b s+bO

0 1

-

. -1 |uls)

k n n-1 ‘
ByS *...+B S*B, s'ta, _qs +...ta;s+a, }

i

i(s)

(3.101)

This equation can be written in the form of Equation (3.93) by defining

a new system, whose transfer function, G(s), contains the zercs of

the model as system poles in addition to the regular system transfer

function:

m
. B.(b_s " +...+b,s8+b )
G(s) = - g m I (3.102)
(Bks +...+Bls+30)(s +an_ls +...+als+a0)

This expanded system is of (n+k)EE order and it should be noted
that the new system poles are cascaded to the original closed-loop
transfer function. Hence, they do not affect the behavior of the
closed-loop transfer function directly.

Thug, the zeros have been removed from the model and cascaded as
poles to the system transfer function. The output of this new system

is expressed by:

;(S) = é(s) u(s)
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Using this result, Equation (3.101) can be written as:

i(s) = [j%a (% + oy 15" w i ags 4 a,) y(s) - u(s)] (3.103)

For 25_@n+k)—m)the time domain version of this equation is:

2

i(e) = %_ (agy (£) o y (£)+. . 4o v ey + W ey o1 (3.104)
0

-1
This follows from the fact that the first n-m-1 derivatives of the
output, in a system with n poles and m zeros, are zero at t=0+ for a
step input. This can be verified from the system eqguations of Section

2.2. As a result:

k4 iy(i)(t)l = si y(s) 0<i<n-m (3.105)

In the expanded system, n-m is simply replaced by n+k-m since k
poles have been added to the system equation. Equation (3.104) is

then written in terms of the transient response:

[

() = (e E(t) + a0 k() +...+40 2Dy 4 2 () (3.106)

BO -1

where the static sensitivities of the system and the model are taken
to be equal as before.
For a model, whose number of excess poles over zeros is equal to

or less than that of the system, i.e. %-k<n-m, i(t) can be written:

~ ~

T

i) = o x(t) (3.107)

1
Bo

where x(t) is the state vector of the expanded system equations in the

homogeneous phase-variable form, which consists of the transient output
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response and its derivatives. For 2-k<n-m, the performance index is:

g = li’]{ xT o of x dt (3.108)

{3.109)

where A is the coefficient matrix of the expanded system and the initial
condition is given by Equation (3.11), substituting the coefficients
of the extended system equations.

When the model has more excess poles over zeros than the system,
i.e. 2-k>n-m, some care must be exercised in transforming Equation
(3.103) into the time domain. Consider, for instance, the case when

2~k = n-m+l. The transform of 9(2)(t) is now:
’iy™ w1 = st vis -y 00 (3.110)

since 2=~1 = n+k-m and y(n+k"m)(0+) is non-zero, in general, as can be
seen from the (1’1+k-—m)i:--11 row of the state equation (3.2) for the expanded

system:

e
X

g (BFEm) 4y = (0+)

Yn+k-m Cn+k-m

where the system is at rest initially. The following result can then

be obtained from Equation (3.110) by inverse transformation:

21 st sl = v e + se) v (o) (3.112)
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where §{t) is the Dirac delta function. i(t) would, therefore, contain
the delta function in this case, which is unacceptable. Higher values
of (4-k) result in even more complicated expressions for i(t). For
this reason, the model will be required to satisfy the condition that
{2-k) <{n-m). This is not a serious restriction, since it is not clear
that anything is gained by using a model with more excess poles over
zeros than the system.

To summarize, it has been shown that the difficulties associated
with defining the model performance index, when the system and model
contain zeros, can be avoided by restricting the model from having more
excess poles over zeros than the system. Furthermore, any model
zeros are removed from the model transfer function and added as
cagcaded poles to the system transfer function. This transformation
of the problem has been shown to be consistent with the definition of
the model performance index in terms of the excitation input to the
error model.

The technique of adding the model zeros as poles to the system
can be given a simple interpretation, when the model and the system
contain an equal number of poles and zeros. If it is assumed,
furthermore, that complete matching of the model and system responses
can be achieved, the model zeros represent desired locations of the
svstem zeros. When the model zeros are added as fixed cascaded poles
o the system, the resulting model contains only poles. When the
performance index is minimized to obtain complete matching of the system
and model responses, the system zeros must be moved such as to cancel
with the new system poles at the same time as the original system
pocles become identical to the model poles. But this is the same as

matching the system zeros and poles to those of the model, which is the

desired result.
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For systems without zeros, the weighting matrix of the model
performance index becomes a function of the characteristic coefficients
when a model of equal order is used, as can be seen from Equation
(3.81). This is a computational inconvenience, particularly when
considering the expected value of J due to parameter variations, which
can be avoided by using the technigue of expanding the system equations.
Thus by adding a cancelling pole and zero pair at some convenient
location to the system transfer function, the system order has been
increased by one over the model, but the number of excess poles over
zeros is equal for both. The method described in this subsection can
then be applied, resulting in a constant weighting matrix for the
performance index.

It should be noted that the expansion of the system is achieved
by adding singularities to the transfer function after all loops have
been closed. These new singularities, therefore, do not affect the
loci of the closed-loop roots.

More detailed information about the model performance index can

be obtained from References [31l] and [32].

3.6 The ISE Performance Index

The integral square error performance index can be defined as a
guadratic expression in terms of the state vector of the error model

in Figure 3.2:

J =f AxT Q Ax at (3.113)

0

where Ax is defined as the difference between the system and model
responses, The difference between the model performance index and the
ISE index is that the MPI focuses on the input to the error model
whereas the ISE index is defined in terms of the output of the error

model and is consequently a more direct measure of the difference
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between the system and model responses than the MPI.

The disadvantage of the integral square error index is thét it
contains the model response explicitly, which increases the computational
tagk. In addition, there is no systematic way of selecting the weighting
matrix in Equation (3.113). In most cases only the first element of
Ax has been used, i.e. the scalar output error. Addition of derivatives
of the output error can then be made on a trial and error basis.

The eguations derived in Sections 3.3 and 3.4 must be augmented
in order to accommodate the integral square error index. First,

BEguation (3.113) can be written:
:f [x" Qx-2x Qx+x Qx| dt (3.114)
0

since Q is a symmetric matrix. If the model is of lower order than
the system, its state vector can be augmented to nEE dimension by the
addition of zeros. Taking the expected value of J gives the following

result:

3=][§£Q§*—2§EQX+XTQX+6§ Q §x 1 at (3.115)

since the nominal response of the system 1is alsc its expected value

and the model response is deterministic. By comparison with Equation
{3.23) it is seen that the expected value of the ISE index contains
two additional terms, both of which are deterministic. These terms

can be written as:

L&)

}{ xF 0 x - 2 xF 0 x) dt = tr[g_ (X - 2@1] (3.116)
o |




where

I >
I

8

X >
[

%+
o)
ct

_}_{_=./-§_>5Tdt and

Assuming that the equations of the system and the model are in

the standard observable form of Section 3.2, the following eguations

are obtained for X and Y using the approach of Section 3.3:

AX+ XA X = O
AY+YA+Y = 0
where
g:-o = go%‘ and XAo"' §0§g

A and é are the system and-model coefficient -matrices, respectively,
as before and i is an nx% matrix. The corresponding terms in the
necessary conditions for a minimum of J must also be determined. The
equation for g is only dependent on the model response and is, conse-
gquently, not a function of the free design parameters. There is,
therefore, no need to adjoin Equation (3.117) with Lagrange multipliers
to J, since it is always satisfied despite variations of the free
design parameters.

Equation (3.118), on the other hand, is a function of these

parameters and must be adjoined to J. The following term is then

added to the performance index:
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where P. is a matrix of Lagrange multipliers which by taking the

variation of J with respect tolg is found to satisfy the equation:

=)

PyA + A7P, = 2Q .~ (3.120)

The variation of the term (3.119) with respect to A and ZO result in
the following terms, which must be added to Equation (3.74), expressing
the variation of J when all the constraining equations are satisfied:
e TOTL T _|_.moror| °= T =0
u{g?)g 5 +g3ago} =|-n"pl¥ [BE} + xp By [——-aE ] p (3.121)

where n was defined as an n-dimensional vector:

QT = [ 0,0,...,0,11]

Thus, all the equations for computing the expected value of the
integral square error index have been determined as well as the necessary
conditions for a local minimum of its value. Specifically, it is now
necessary to find the solution of two additional matrix equations in
order to determine the value of the ISE index as compared with the
performance index containing only the system response. The problem of
computing the minimum value of J and the corresponding free design

parameter values is discussed in detail in Chapter 4.

3.7 Example Problem

A simple example, which shows the effect of using the expected

value of the integral square error performance index, will be given.

Example 3.1

The plant consists of a simple integrator with variable static sen-

sitivity whose nominal value can be chosen. The desired response is

106




represented by the step response of a first order model with the
transfer function:
1

G(s) = e {(3.122)

An identical nominal response can be obtained for the system by
adding a feedback path around the plant as shown in Figure 3.3 and

choosing the nominal open-loop static sensitivity equal to unity as:

S
OL
G(s) = —== (3.123}
s + SOL
uls) + > SOL p y (s)
- S

Figure 3.3 System i}th Unity Feedback

This system is relatively sensitive to changes in SOL as can be seen,

for instance, from the variation of its pole position, which is given

by:
8s
OL
= - = -k POk Y
Spl GSOL SOL Sx (3.124)
OL
Any change in SOL’ therefore, results in an equal change in Py - In

order to decrease the sensitivity a zero may be added to the feedback

path as shown in Figure 3.4.
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u(s) + OL y(g}

1+§—— ¢—

Figure 3.4 System with zero in Feedback

The transfer function of the system is given by:

Son?1

S +
G(s) = oL 1 (3.125)
Sor %1
Son+21

where SQL and z. are free to be chosen. The nominal response of the

1
system can be made identical to the m9del response by choosing:

a = . OL71 _ 4 (3.126)

in which case the variation of the system pole becomes:

\
88
1 oL
6p = —_ e e (3.127)
1 Son \ Sow

Equation (3.126) determines an infinite number of combinations
of the design parameters which result in a nominal response identical
to that of the model. The addition of the zero in the feedback path,
therefore, provides increased freedom in the design, which is not
reguired in order to satisfy the requirements on the nominal response,
but could possibly be used to reduce the effect of changes in the

static sensitivity on the system response. From Equation (3.127) it



is observed that, for a specified percentage change in S the

oL’
resulting variation of the pole can be made arbitrarily small by
choosing a large nominal value of SOL'

The ISE index for this first order problem can be written:

<) ~ 5 ) 5 0 AZ : [ ~
J=/,(x-—x) dt =[ x° dt +f' X dt—f x x dt (2.128)
0 - 0 0

~

where x and X are the transient responses of the system and model to
a unit step input, respectively. These integrals can be determined
in terms of the system and model coefficients by solving Egquations

(3.27), (3.117) and (3.118), which are scalar equations for a first

order system. Thus, we have that:

_ L2 _ -
ap¥1y T ag¥p S ¥ =L i %=l
Gk +ox. =%l =1 ; wm.o=-1 (3.129)
0¥11 * %p¥11 T ¥ ; 0 ‘
ag¥yy * Yy T Xp¥p = 1

~

where Xypr %q3 and ¥i1 denote the three integrals in Equation (3.128),

which by substitution of their solutions becomes:

(ao—uo)2
J = (3.130)

2a0a0(a0+u0)

Clearly, J=0 only when the transfer function of the system is identical

to that of the model, i.e. a, = o

0 The expected value of J can now

0°

be written as:
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o
I

(ag - a,
2a6 o, (a T o ) / Gx dt (3.131)

where the nominal values are denoted by an asterisk and 8§x is the
variation of the system respbnse to changes in SOL' The value of the
integral term can be determined by solving Equations (3.34),(3.40) and
{3.43) for this problem, recognizing that 6x0=0, since the closed-loop

static sensitivity is always equal to unity:

(3.132)

where lel denotes the integral term and w=6ag.

The solution of these equations, using the previously obtained

solution for Xqq7 gives the following result:

o)
]
o N

éxll = ‘ (3.133)

S
v
O W

Assuming that the response of the system is constrained to be identical

to the model's response for the nominal value of S the first term

oL’
of J is zero. J is then equal to the second term, which represents
the effect of the parameter variation on the expected value of the

performance index. For the first configuration with unity feedback,

this term becomes:

Tz
55 s
1 .,2 OL 1{ °"on
5% = 122 | O = i & (3.134)
11 Z ot KSOL) ] \ SE.




is similarly obtained as:

3
§s
fx T = 1 oL (3.135)
11 1052 5%
oL

It is reasonable to take the mean square value of the percentage

variation in SOL to be constant, since this variation is unlikely to

be affected by the choice of the nominal value. This nominal value
is fixed for the unity feedback system and there is no way of reducing

the value of lel without changing the output response. The addition

of a zero to the feedback allows SOL to be chosen freely, with the

value of Zq determined by Equation (3.126) under the assumption of

perfect model following. With &x inversely proportional tc the

11
square of the static sensitivity, it is clear that SSL would be
chosen as large as possible. As SOL approaches infinity we have from

Eguation (3.126) that:

lim =z = lim - = 1 (3.136)

Hence, the expected value of the integral square error index is
minimized, in thecry, by placing the feedback zero at the desired pole
location and using infinitely large gain. In practice the available
gain is limited and SéL would be chosen to be at its upper limit.

The response of the system with the unity feedback is shown in
Figure 3.5 for the nominal value of SOL as well as for +50% variation
from that value. The corresponding responses of the system with a
transfer zero in the feedback path are shown in Figure 3.6, where SgL
=3, which is arbitrarily chosen as the upper limit of that value. The
corresponding zero location is at z, = -1.5.

The nominal responses are identical by constraint, but it is
clear that the deviations of the second system configuration to

changes in the gain are considerably smaller than those of the
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Figure 3.5. Response of system with unity feedback

Figure 3.6. Response of system with zero in feedback
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system with unity feedback. Thus, the response envelope in Figure 3.6,

which is determined by the high and low values of § falls completely

oL’
within the corresponding envelope in Figure 3.5. The sensitivity
functions of the two configurations are plotted in Figure 3.7. These
are proportional to the first order deviations of the system responses
and are in fairly good agreement with the actual deviations.

The sensitivity of the first order system to changes in gain has
been significantly reduced by the addition of a transfer zero to the
feedback path to provide the additional freedom in the design and by
using the expected value of the performance index as a guide in the
selection of the design parameters. The nominal responses of the
system were required to be identical to the model response in order
o observe the effect of the second term in J separate from the nominal
term. This would not be done in most applications unless there was
a specific requirement on the nominal response.

The implicit assumption has been made here that the location of
the feedback zero is absolutely stable. This is not necessarily the
case and the effect of variations of z, on the solution will now be
explored. The nominal responses are still required to be identical
o that of the model. The design with unity feedback is independent
of the zero variations and is, therefore, unaffected. The effect of

the parameter variations on the second design is again expressed by

the second term of the performance index, which in this case becomes:

2 N2
§s Sz
6%11 = — e ) * l2 "z'% (3.137)
* *
4SOL oL 4zl 1

where it has been assumed that the two variations are uncorrelated.
The restriction on the nominal performance gives the following

L i * * o
relationship between SOL and 21:
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S*

2t = Ok (3.138)
* -
sk:, 1
which by substitution into Equation (3.137) gives:
2 ‘ N2
88 " 8z
1 OL 2 1
5% = !+ (s%x_-1) —_— {3.138)
11 4S6L2 SSL OL z¥

This expression can now be minimized with respect to SSL by

setting its derivative equal to zero. The corresponding values of SO?

and zi which are the design values, are:

3 2
(GSOL) (Gzl)
S* FA]
sgro= 1+ —O9L; 2x = 14 S W
———.————2—
<6SOL>
*
SoL

OL
T ew N2
Szl
zi

It may be noted that as the mean square value of the relative zero

{3.140)

variation becomes small,SéL approaches infinity, which is the solution
obtained previously for a perfectly stable zero. When this mean sguare
value becomes infinitely large, on the other hand, SSL approaches

unity and the nominal locaﬁion of the zero becomes infinite. But this
is identical to the solution with unity feedback. . This result indicates
that the zero in the feedback can always be used to reduce the sensi-
tivity of the system, as defined by the term EEII, regardless of the

variations in its location. This can be shown by substituting the

expression for the design value of SSL into Equation (3.139):



_ 83
891 = = = | == (3.141)

e N2 OL
(cSSOL)
*
5oL
P
(Gzi>
Z %

For the same gain variation this value is always smaller than

the corresponding value for the unity feedback system, as given by
Egquation (3.134), although the reduction becomes insignificant when

the zero variations become large. It is interesting to note that the
amount of reduction in sensitivity achieved by adding the zero; depends
only on the ratio of the mean square values of the relative parameter
variations.

Finally, the. integral square error index, as .given by Equation

s z
(3.130), is plotted as a function of SSL and E% in Figures 3.8 and 3.9,
OL 1 \

respecti&ely, for a number of values of the parameter variation ratio.
The nominal design values are giﬁen by Equation (3.140) as functions
of this ratio. One of the parameters is held constant at its nominal
value while the other is varied in order to determine the values of J.
In Figure 3.8, the system with unity feedback 1s represented by
v=0, since in this case the zero has infinite variation about its
nominal and is removed from the system altogether. When this variation
decreases relative to that of the static sensitivity and the effect

of the feedback zero is increased, the curvature of the ISE index as a

SOL

%
SOL

percentage variation in SOL' which is a specified constant, is therefore

function of is decreased at the minimum. The effect of the

decreased and becomes zero in the limit when the feedback zero location

is perfectly stable, i.e. y=w. The opposite effect may be observed
Z

for the ISE index as a function of E% from Figure 3.9. As the effect
1 ,

ot
o
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of the feedback zero is increased in order to decrease the system sen-

sitivity to changes in S the curvature of the ISE index is increased.

oL’
This clearly makes it more sensitive to a given percentage change in
zl as the value of v decreases, i.e. as the zero location becomes more

Z
stable. On the other hand, the actual variations of —l~become smaller

Z%
as y decreases, since the percentage variation of SOL is constant.
The price paid for reducing the sensitivity of the system to changes
in'SOL’ hence, is not as high as might be expected from Figure 3.9.
The improvement in system sensitivity, as measured by the sensi-
tivity index §§EI of Eguation (3.137), is basically obtained by
distributing the effect of parameter variations on the system betwesen
the two independent parameters according to their relative stability.
Since it is statistically less likely that worst case conditions occcur
when two independent parameters are involved than in the case of a
single parameter, an improvement is achieved as measured by the
influence of the variations on the expected value of the performance

index.

3.8 Multivariable Systems

So far only single input/output systems have been considered.
As is well known, the various transfer functions relating the outputs
to the inputs of a multivariable system all have the same poles, with
the differences confined to the zeros. In many applications the
system requirements make it necessary to specify the desirable char-
acteristics of more than one of these input/output transfer functions.
A straightforward approach to such problems is to treat them as
separate but simultaneous problems. Thus, when the model responses
of two such transfer functions are specified, a performance index can
be formed for each of them. The simultaneous design process is then
implemented, for instance, by minimizing the weighted sum of the two

indices, which constitutes an overall system performance index. The
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emphasis on a given transfer function can then be varied by changing
its corresponding weighting factor. The computational effort in
finding the minimum of this new index is multiplied by the number of
transfer functions considered, when compared with the effort required
for a single input/output system. When only a few such transfer
relationships have to be considered, such as is the case in most
flight control systems, this is by no means an impractical task using
the numerical methods described in Chapter 4.

A variation of this method consists of selecting mutually
exclusive subsets of the design parameters with each set corresponding
to a specified transfer function. The individual performance indices
are then minimized one at a time varying only the appropriate subset
of the design parameters in each case. The problem is, in effect,
separated into a series of single input/output problems which must be
solved in an iterative manner until a satisfactory result is achieved.
It is not clear, however, that the computational task is any less in
this case than is required for the minimization of the total perfor-
mance index.

These methods are discussed in Reference [31] in terms of the

model performance index, but other indices could be used as well.

3.9 Effects of Noise

The reduction of system sensitivity to parameter variations is
very often obtained by significantly increasing the bandwidth of the
feedback path beyond the bandwidth required by the nominal condition.
This has the undesirable effect of amplifying sensor noise, for

nstance, which enters the system at the feedback level. It is,

[N

therefore necessary to give some consideration to how this effect can
be taken into account in the design process.
A simple but practical approach is to estimate the maximum

tolerable bandwidth from the knowledge of the power spectrum of the



noise. This estimate can then be used to determine the permissible
range of one or more of the design parameters. Numerous methods are
available for constraining the values of these parameters.

A more systematic method, which is also compatible with the
general design process, consists of defining a cost function representing
the effects of the noise on the system output and adding it to the
system performance index. One common function of this type is the
mean value of a quadratic form of the system state vector, which is
excited only by the noise input:

7= &) gx(t) = trigxx] = tr ok (

{20
[
[N
[
[

where the weighting matrix may or may not be the same as the matrix
used in the other terms of the performance index. The input noise is
agssumed to be Gaussian and can, therefore, be produced by passing
uncorrelated white noise through an appropriate shaping filter. In
the following derivation it is assumed that the transfer function of
the shaping filter has already been determined and is included in the
overall system transfer function. The state equation of the system is

taken to be in the standard observable form of Section 3.2:

= AX+cu . (3.2)

]

where A is in the phase variable form as usual and u(t) is the white

noise input which is defined by:

u{t) u(?T) = w §{t-T) (3.143)

where §(t) is the unit delta function. The egquation for the covariance

matrix of the system state can now be derived, using the state
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egquation:

QA[QA
ot
I
I
H]
¢
I3
+
1%
%
[}
| X
I
+
3
1%
I
+
g |
1™
o]
+
IQ
e
[k

(3.144)

Since the output of a linear system, excited by white noise, is

. T , . . . . .
a stationary process, X X is time invariant. Hence, its time

derivative is equal to zero and the equation becomes:

+ ux ET + cu §? = 0 (3.145)

b
b=
+

g

1<

It is now necessary to determine the cross correlation between the
input and the output. This is done by expressing the solution of the

state equation in the well known form:

x(t) = g(t,to) X +./ﬁ ¢(t,t) c u(r) dr (3.146)
0
where g(t,to) is the state transition matrix satisfying the homogeneous

state equation:
t,) =1 (3.147)

Multiplying Equation (3.146) by u(t) and taking the expected value on

both sides gives the following result:

————e—— —— t S

u(t) x(t) = g(t,to) u(t)§0 +Jr 2(t,T)c u(t)u(r) dat (3.148)
0

The input and the initial condition vector are uncorrelated and only

the steady-state output is considered such that the first term of this

eguation is zero. Equation (3.143) can then be substituted into the



integral in which case:

 —— t
u(t)x(t) =/ g(t,'r)_c_ w §(t-1) 4T = 22‘—3 oW (3.149)
0

This result, as well as its transpose, is then substituted into

Equation (3.145) to give:

= - wc g? = - w C (3.150)

xa'+a

1>

The value of the cost function on noise can, therefore, be
determined by solving the same basic matrix equation as the one used
to find the value of the quadratic performance index, except that the
system matrix now includes the coefficients of the shaping filter as
well as those of the system. The necessary conditions for a local
minimum of this cost function can be obtained in the same manner as
before and added to the previously derived equations in order to form
the necessary conditions for the total performance index.

The addition of the noise cost function to the system performance
index increases the amount of computations which must be performed in
order to determine its minimum as was the case with multiple input/
output systems. The numerical methods of Chapter 4 allow this task to
be performed in a practical way although this will not be done in this

report.

3.10 The Inverse Sensitivity Problem
The specification of éomponent tolerances 1is an important part
of any control system design effort. One method for determining
these tolerances is to simulate the system dynamics and observe the
effect of changes in the component parameters on the response.
Although such a simulation is likely to be performed in the final stages

of the design process it may be undesirable to do so in the early stages.
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The method of inverse system sensitivity may be used in this case to
make a guick estimation of these tolerances, especially when a
performance index in the quadratic form is used in the design process
One approach to the inverse sensitivity problem would be to
specify the maximum permissible value of some sensitivity index and
find the corresponding component tolerance which, in general, would
not result in a unique solution for multiple parameter variations.
Such a sensitivity index was defined in Section 3.3 as the quantity,
which represents the first order effect of parameter variations on

the expected value of the performance index:
JS =/ 8x” Q 6x dt = tr[Q dxl (3.151)

The matrix, 8X, was then found by solving Equations (3.27), (3.34),
{3.40) and (3.43), knowing the covariance of the parameter variation.

Specifying the value of J, does not, however, determine a unique value

S

of 8§X. Even if this matrix were to be specified, the aforementioned

equations are not very suitable for determining the corresponding
covariances of the system coefficients, which are contained in the EZO,
W and V matrices of Section 3.3.

A much simpler approach can be taken, using the linearity of
these equations. Thus, it is only nécessary to compute the value of

JS for a single variation of a given parameter in order to determine

Is

for all possible variations of this parameter. Assume, for instance,

that JS is computed for agi, a specified mean square value of the

variation of &. The value of JS for any other mean square variation

of this parameter i1s then given by:
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(3.152)

since Eqguations (3.27), (3.34), (3.40) and (3.43) are all linear in
the solution matrices as well as the parameter covariance matrix, R,
which in this case contains only a single element, ng. If the
variations of any two parameters are uncorrelated, it can furthermore
be shown that their contributions to the sensitivity index are
additive, i.e. the total value of JS is obtained by superimposing the
effects of the independent sources. The contribution of correlated
variations are then computed simultaneously.

These properties can be used to estimate the permissible range
of the parameters under investigation. The relative effects of
changes in the various independent parameters on the system performance
can be determined by comparing the contributions of unit variations to

J This allows a gquick trade-off between the parameter tolerances

g*
to be made. An estimate of the actual value of these tolerances can
also be made, assuming that the maximum value of JS can be specified.
A method, which could possibly be used to determine this value of JSE
consists of computing the variation in the system response as one
parameter is changed by one standard deviation, for instance. By
computing the corresponding value of JS a correlation between the
deviations of the response and the sensitivity index can be
established. The first order example of Section 3.7 will be used to
illustrate the use of this method.

Example 3.2

Consider the system shown in Figure 3.4 with SOL and z, as the
free design parameters. The model response is the same as before and
it is assumed that the nominal values of the design parameters have

been chosen as:



* = Z
SOL 3 and
These values cannot be changed, but the bounds of the variations of
SO* and z, are to be specified. The variations of these parameters are

taken to be independent in which case JS is given by Equation (3.137)

as:

2 2
§s Sz
it OL il i
Eij = O = (3.153)
S 36 SOL 9 zl

where the nominal values of the design parameters have been substituted.
This expression shows that a specified mean square relative change in

2 has four times as much influence on the expected value of the

performance index as has the same change in S If no other informa-

oL”

tion is available about the system components the relative tolerances

of the parameters may be specified such that:

2
GSOL . dzl
SoL £

2

with the objective of achieving a balanced design in the sense that
an equally likely variation of either parameter have the same effect
on the performance index.

A correlation between the value of JS and the actual deviation

of the response can be obtained from Figure 3.6 which shows the system

response for + 50% variation of the static sensitivity. Assuming,

Fh

or the moment, that this is the standard deviation of a single

the value of J_. is found to be:

variable parameter, namely SOL’ s

|
Js = T2z



Using this value as the maximum value of J_. and the previously

S

determined ratio of the variations, the desirable values of the mean

square variations can be computed from Equation (3.153) as:

2
5S4y, 1
SOL 8
2
i _ 1
zl 32

The tolerances may then be set at plus or minus one standard deviation,

for instance, in which case:

§S

o max. ' 8

e

.18

The off-nominal responses of the system are shown in Figure 3.10
for the maximum allowable variations of each of the two parameters.
The envelope of thé dutputfdeviations due to variations of the open~
loop gain is clearly very similar to the corresponding envelope for
variations of the zero location. This is in agreement with the equal
contribution of these variations to the sensitivity index. The
magnitudes of the response deviations indicate whether the value of
Js’ which was used to set the tolerances, was chosen too large or too

small.
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Figure 3.10 Off-nominal responses of first order system
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3.11 Summary

The problem of designing a linear control system, which is subject
to variations or uncertainties of some of its parameters, has been
formulated as a constrained stochastic control problem. The
configuration of the system is determined a priori by the designer with
some free design parameters which can be chosen so as to optimize the
system performance. Minimization of a quadratic performance index in
terms of the transient system state vector is used for this purpose.
Its value is random, however, due to parameter uncertainties, and the
performance index is therefore defined as the expected value of the
quadratic term, which is deterministic. This quantity was shown to
be a sum of two terms, the first of which is simply the value of the
performance index for the nominal parameter values. The second term
depends only on the variations of the system parameters and can be
used as an index of system sensitivity.

The necessary conditions for the minimum of this performance
index could be obtained as straightforward matrix equations only
because of the convenient form of the equations when the system
matrix is in the phase-variable form. The problem of computing the
numerical soluticon to these equations is left to the following chapter.
Two specific forms of the performance index arc considered, i.e. the
model performance index and the integral square error index. The MPI
is interpreted in a new way in terms of the error model of the system.
This leads to a new and simpler method for dealing with systems with

transfer zeros than was avalilable before.
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The integral square error index includes the model response explicitly
as a function of time which makes it necessary to augment the necessary
conditions. The effect,is, however, limited to the nominal part of the
performance index and the sensitivity term is unaffected by the model
response. An example, applying the ISE index to the design of a first
order system, shows that using the expected value of this index is very
useful in reducing the system sensitivity to variations in gain, given
enough design freedom.

2 method for including the effects of noise is considered
whereby a new term expressing this effect is added to the system
performance index. Finally, the problem of inverse sensitivity is
discussed and a method developed for estimating the tolerances of

statistically independent system parameters.
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Chapter 4. Numerical Methods

4.1 Introduction

The necessary conditions for a local minimum of the expected
value of a quadratic performance index were derived in Sections 3.3
and 3.4 of the previous chapter. These were found to consist of
2(n+2) matrix equations plus a single vector equation as shown by
Eqguation (3.75), where n is the dimension of the system state. A
solution of these equations must now be found in terms of the free
design parameters. An analytic solution was obtained for a simple first
order problem in Chapter 3, but this is impractical or impossible
for any higher order problem especially if transfer function zeros are
involved. It is therefore necessary to develop a numerical technigue
for obtaining the solution.

A well known method of this type is the gradient or steepest
descent method, whereby the solution is found by iteratively moving
in the negative direction of the local gradient vector in the parameter
space. More specifically, the procedure consists of satisfying all
the constraining equations of (3.75) except the last equation, which
is a vector equation and becomes the expression for the local gradient
at the current point in the parameter'space as will be shown later.

Solutions to these constraining equations must be obtained for
each step of the minimization process, using the current value of the
design parameters. These solutions are then substituted into the
last eqguation of Equation (3.75) in order to determine the gradient
at this point. Thus, it is important that these equations be solved
in a relatively efficient and accurate way, which is not a simple task
for systems of high order. A problem of sixth order, for instance,
requires the solution of 16 such equations with an equal number of

solution matrices, each of which contains 36 elements. Thus, 576 scalar
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eguations must be solved in this case although some of these are
identical when the solution matrix is symmetric. One method which has
been used in the past to solve equations of this type defines the
sclution as a steady-state solution of a matrix differential equation.

For instance:

= ax+xa 4y (4.1)

I e

This eguation is then integrated by some numerical procedure, such
as the Runge-Kutta method, until a steady-state condition is reached,
assuming that the system equations are stable. The initial condition
for X is arbitrarily chosen, for instance, equal to the zero matrix.

This method is equivalent to solving for the time response of
the system, which may require a great number of time steps before
steady~state is reached. It has been found to be inefficient as well
as inaccurate 1f the integration time step is not carefully selected,
but has been used successfully in the solution of the deterministic
design problem. In this case it is only necessary to solve two such
matrix equations, whereas an additional 2(n+l) equations must be
solved in order to determine the value and the gradient of the expected
value of the performance index.

In following a suggestion by Professor Potter that the solution
to Equation (4.1) could be simplified by writing the solution .s a
product of two matrices it was discovered that an explicit solution of
Eguation (4.1) can be obtained when the system matrix is in the phase-
variable form. This solution leads to a very efficient method for
determining the minimum of the performance index defined by Equation

(3.13).



4.2 Solution of Matrix Equations

It was found in Section 3.3 of the previous chapter that the
matrix equation (3.33) assumes a very convenient form when the system
matrix is in the phase-variable form. This was seen by writing the
equation column by column and obtaining an iterative relationship for
any column vector of the solution matrix in terms of the adjacent
column vector on its left hand side. This simplicity of form is a basic
property of all the constraining matrix equations of Equation (3.75),
and it can be used to develop a method for their solution. These
equations are basically of four types although there is a great amount
of similarity between them. The solution for each type will be developed
separately.

T _ c

[

4,2.1 AX+ X

This equation includes two system matrices: A, which is an nxn

system matrix, and A, which is an 2x% system matrix. Both A and

assumed to be in the phase-variable form. A is either identical to 3,

ey
S
=
o

in which case %=n, or it can be different from A. An example of the
latter case is the integral square error index, where A is the model
matrix and pr. The unknown matrix, X, and the constant matrix C must

then be nx{ matrices. The quantity X ér can be written as:

i ) { ! 1T 0 0 ... O —ao i
| | I 1 0 ... O ~ay
~ I i l
x A" = Xy | Xy |t | Fpo1 0 1 ... 0 o, |=
l I ! . . . o
| I l T : :
] I ! ‘ in 0 0 ... 1 —uz_i
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bz boeee Dxgy | o—ogxg - agxy = ees —ap xp (4.2)

where %, is the (i+l)EE column vector of X. The effect of postmulti-
plying a general matrix by the transpose of a system matrix in the
phase~variable form is to shift its columns to the left by one position.
The last column is then replaced by a linear combination of all the
column vectors, each of which is multiplied by the system coefficient
of the same order. This property is useful in machine computations
since the multiplication can be performed faster than in the case of

two general matrices of the same dimension.

The matrix equation under consideration can now be written

column by column using Equation (4.2):

Ax + X, = cC

Axg + % = &

' . _ (4.3)
AXp 2 "X T S0

AX - 0.X

BXo 1 0¥0 7 %1Fp T e T %o1Fpa1 T Spn

where <y is the (i+l)§E column vector of the constant c matrix. Thus,
an iterative relationship is obtained for the iEE column of X in terms
of the (i—l)iE column. In order to start this pfocess it is necessary
to compute Xq- An expression for 50 can be obtained by successively
substituting for Xy e 52_1 in the last equation of (4.3) using the

first -1 iterative expressions. This leads to the following equation

in x

%y alone:
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+ E + E

= { Y
EgXg + Ep 180 * Ep 08 * «-- F EjCy 5 * EpC o (4.4)

=1-=8-2 =0=2-1

where E, is a matrix polynomial defined by:

i i-1 .
E. = (-A)" + a, ;(-A) toe.o o o g (-RA) 4o T l<i<q
: (4.5)
and EO = I
X, can now be computed by inverting E s
2
xg = B0 ] Ejq e, ] (4.6)
- i=1 *

~

It has been shown, that E, can be inverted as long as A and ~A
have no common eigenvalues [13], i.e. the system has no common poles
with the adjoint system equation defined by:

X A~ ~
x(t) = - A" x(t) (4.7)

If A and é are both system matrices of stable systems all their poles
are in the left half complex plane. The adjoint system represented by
Equation (4.7) has all its poles in the right half plane in this case,
since the poles of a systemiand its adjoint form a mirror image about
the imaginary axis. EQ can therefore be inverted as long as the condi-
tion of stability is satisfied. When é = A, as is the case in some of
the equations of (3.75), the same condition holds. It may also be
observed that at the point of instability, i.e. as the poles cross the
imaginary axis in the complex plane, the system poles coincide with the

poles of its adjoint system and E, is no longer invertible.

L

When X, has been computed using Equation (4.6) the remaining



column vectors of the x matrix are obtained using the iterative

relationship:

= - A X. + c, 1<i<t (4.8)

Finally, a very useful expression for computing the Ei matrices can

be obtained from Equation (4.5):

=-AE; ;+o ;I 1<i<® (4.9)

with

=
it
{H

4.2.2 BB +RA=C

The solution to this equation can be obtained in a similar way
to the solution of the preceding matrix equation. The system matrices
are the same as before and C is any constant nxf matrix. The product

term P A can now be written as:

>

jrd
i
it
o
[end
o
‘,_.I
L)
i)
B
I
=
l
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The effect of postmultiplying a general matrix by a system matrix in

the phase-variable form is to shift its columns one position to the

right, replacing the first column by zeros, in addition to subtracting

a term of the from ai

This is a useful relationship for machine computations.

~1Po_1 from the

th
i— column of the new matrix.

The matrix

equation is then written out column by column as before, which gives:

|

o
()

I

Q
o

o
=

I

|—J

Iﬁa

el
-+
i)
1
Q

T -
APy 1tRy 5 ~%9_ 1Py 1% Sq1

These equations give an iterative relationship for the
column vector of P in terms of the (i+l)—s-E column vector as well
last column vector. It is therefore necessary to start by computing

the value of Py_q- This can be done by successive substitution for =]

L th
s R

in the iEE equation of (4.11), using the expression obtained for Ps

from the (i+l)§E equation.

Starting with the last equation, which

gives Py_» in terms of Po_1 this process is completed when all the

unknown column vectors except Po_1 have been eliminated:

ot
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B -1

By Bgop T (-R)

2~2
Cpy ¥ (FA)T Tey 5 teeut (FB)gy +cy= 0 (4.12)

where E, is the same matrix polynomial as defined by Equation (4.5).

Py is then obtained by inverting this matrix:
-1 .
_ -1 i
Pg.1 = "By izo (-a) Si (4.13)

where the inverse of this matrix exists subject to the conditions
outlined in the preceding subsection. The remaining column vectors

are then easily computed by using the iterative relationship:

+ C

Ciil 0<i<f-2 (4.14)

= o - AT
By T %i41Bg-1 T 2 Bjy

The term expressed by the summation in Equation (4.13) is

computed most conveniently by using the iterative equation:

T .
d; = A gy s tc . g 1<i<f~-1 (4.15)

where

4y = Se-1
and

,Q'il i
d, . = (-A)" c. (4.16)
=2-1 120 = =i

4,2,3 Solution of Ei and Ai

The equations for the nxn 25 matrices were derived in Section

3,3 as:

Z.+AZ. o+ xv . =0 0<i<n-1 (3.40)
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It is clear that EO

remaining matrices from Equation (3.40). This can be done by consecutive

must be determined first in order to compute the

substitution into Eguation (3.43) of the iterative expressions for Z. .
starting with En—l' The following equation for 20 is then obtained:

T T
EnZo” Eo¥o¥y1 7 EaXo¥np TreeT Bp ¥y FXW =0 (4.7

where Ei is the same matrix polynomial as expressed by Equation (4.5)

with o, = a., and £ = n:
i i

(-a)* +

i-1
Ei a an_l(_é) +.eot A

it

n-i+1 (7R AT (4.28)

0<i§p—l

and E,= I

E_ can always be inverted when A is the system matrix of a stable system.

The solution for Z. then becomes:

-0
-1
S I B T N

and the remaining Ei matrices are computed from the iterative relation-

ship:

o>

e
[o%)



The equations for the Lagrangian matrices corresponding to the
preceding equations for Z; were derived in Section 3.4:

AMa - agh = 2p, I (3.58)
and

Ay ¢+ AA=-a; 40 -2p, I= 0 l<i<n (3.60)
where the Pin coefficients are members of the last column of the
Lagrangian matrix Py which is assumed to have a known solution at
this point. Equation (3.60) is an iterative relationship which makes
it possible to determine all the Ai matrices once An has been computed.

The following equation for An is determined by successive substitution

of Equation (3.60) into Equation (3.58) starting with i = 2:

_ _a -1 ‘ _ayh—2 _

= =2 [pnn( A) + p(n_l)n( A) tooot py A)+pln§_]
(4.22)

where Er is the same matrix polynomial as before and can therefore be

inverted for a stable system to give:
nzl i].-1

A = -2 [ Z P(i_l)n("l}_) ]]_E_n (4.23)
i=0

The remaining matrices are then readily determined, since:

= a A - Aié + 2 pin£ l<i<n (4.24)

Ay g i-14n
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4.3 Numerical Accuracy

It has been shown that in order to obtain a numerical solution
to the matrix equations considered in this section a great number of
matrix operations must be performed, including a matrix inversion,
Most of these involve multiplications by the system matrix A, in some
instances to nEl—l power. The speed and accuracy of the machine
computations of these multiplications is enhanced by taking advantage
of the phase-variable form of this matrix, as indicated in Sections
4,2.1 and 4.2.2 in the case of postmultiplication of a general matrix
by A or its transpose. Analogous properties can be demonstrated for

premultiplication by A of a general matrix, in which case the rows of

this matrix get operated upon. For instance:

T
0 1 0...0 . =i}
Eo """"""""""""""""""""
0 0 1 ...0 ||-memmeZBmcene :
AB =| M M . T | e e e e e (4.25)
1o 0 0 1 A — bT
0 B I R R P -n-1_ ______
T
T 'I‘
B LS R | —n-l BT S W LA |

The effect here is to shift the rows of B up by one position and replace
the last row by a linear combination of all the rows of B. A similar
expression can be given for the premultiplication by the transpose of
the system matrix.

However, it has been found that the numerical accuracy of the
preceding solutions is insufficient for most practical problems when
the computations are performed with an eight decimal accuracy (single
precision) using the standard Gauss-Jordan method for matrix inversions.
One possible way of improving the accuracy consists of increasing the
number of decimals to sixteen. (double presision), which doubles the

storage requirements in the computer memory. A more elegant method uses



an iterative procedure for refining the solution until some desired
accuracy has been achieved. This requires no additional storage.space
but may result in a longer computation time depending on the number of
iterations performed, This technique will be described in detail for
cach type of matrix equation.

Consider first the equation of Section 4.2.1:

>

AX+ X T - C (4.26)

|

assuming that an initial solution has already been computed, using the

appropriate equations. This solution, which is denoted by X, is then

substituted into the original equation, which gives:

(4.27)

where 9& is now the computed right hand side of the equation. By

subtracting this equation from the- original one the following result

is obtained:

/\T_
AMX) + AX.AT = AC) (4.28)
where
A&l = X = §l (4.29)
and
Agl = C - El (4.30)

AX is as yet unknown, but Agl is the difference between the computed
and actual constant matrices and is therefore known. If this difference

is zero it follows from Equation (4.28) that AX is zero and the computed

solution, X is exact. In most instances this will not be the case

ll
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and Equation (4.28) may be solved in order to determine AX.

This is done by simply replacing the C matrix by Agl, A new
computed solution is then obtained by adding the computed value of 40X,
which is denoted by Agi, to the previously computed solution matrix:

X, = X; + A% (4.31)
The process may then be repeated as often as required to achieve the
desired degree of accuracy, assuming that convergence is experienced.
The iEE computed solution is then given by:

+ A% ...t AX

2i-1 (4.32)

5= %
The computed C matrix is similarly obtained by adding the contribution
of each iteration to the previously computed right hand side of
Equation (4.26):

C, = Cq + AC, +...+ AC, (4.33)

i 1 1 1

It should be noted that once the coefficient polynomials gi and
g%—l have been computed for the first solution, it is unnecessary to
recompute them for each iteration, which is a matter of some practical
importance. There is, of course, a trade-off here between storage space
and computater time, since a total of n (nxn) matrices must be stored
in order to avoid recomputing them. It should also be pointed out
that no effort has been made to improve the accuracy of the inversion

of the E, matrix, which is an area of potential improvement although

L

the degree of accuracy of this operation has not been determined.

The iteration procedure, which has just been described, has

IS
[

been found to have very satisfactory performance both with respect

14
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accuracy and rate of convergence. The accuracy is détermined by com-
paring the specified constant matrix, C, with the corresponding

computed matrix, which is obtained from Equation (4.33) for the iEE

iteration. The maximum percentage error of all the elements of éi

can then be used as an index of convergence. Typically, the rate of
improvement of this error has been found to be about at least two .orders
of, magnitude per iteration and often more. The maximum permissible value
of this error has been arbitrarily specified:as one part per lOlO
in the numerical examples of this thesis, using double precision in
some of the critical matrix operations.

The same basic method can be used to refine the solution of the
remaining matrix equations although some explanations are in order
regarding the computation of the equations for Ei and Ai‘ Assumiﬁg
that a first solution has been computed for all the gi matrices, for
instance, these can be substituted into Equation (3.43) to give:

o (1) 7 (1)

AZ - a

_ 4 (1) T
Az 4 a.z

n-12n-1 "~ °*°°* 029 't E¥p-1 T

2K

X (4.34)

1
where §£l> denotes the first computed value of Ei and X W, is the
computed value of X W. Subtracting this eqguation from the original

eguation then gives an equation for the correction:

(1) (1) (1) _
AAZ T - Ay qAZ T —e.a- agAZgtt = A(X W) (4.35)
where
(1) _ _ 7 (1)
AZ;™ =z, - 2 (4.36)
and

(4.37)



(1)

The computed solutions, Ei , can also be substituted into the iterative

relationship of Equation (3.40) to give:

(1

2 v az) kT - 0 0<i<n-1 (4.3

—i

Lad
0
St

)
i-1 ~0—i~-1 -

i

The qguestion may be raised here why the right hand side of this
(1)

equation is eqgual to zero considering the fact that the matrices Z;

()

and Z are inexact solutions in general. The answer to this guestion

is that Equation (4.38) is correct within the limitation imposed by

5 (1)

round~-off errors, since Z was obtained by computing the right hand

side of the following equation:

21—y () T : (4.39)

As a conseguence it is not necessary to actually substitute the soclutions
into Equation (4.38), but it can be subtracted from the original

(1),

equation to yield an iterative equation for AZ

azft a2 = o 0<i<n-1 | (4.40)
-1 —i~-1 - -
The solutions to Equations (4.35) and (4.40) can then be computed and
added to the previous solution:
z(2) = (1) ¢ pg (1) (4.41)
—i =i =i
This process is then repeated until.the desired accuracy is
achieved. It is interesting that the n computed matrix solutions only
have to be substituted into one of the n matrix equations in oxder to
permit the computation of the corrections. Equations (3.58) and (3.60)

for Ai have a similar property, whereby the accuracy of the sgolutions



can be determined by substitution into the first of these equations.

For instance:

Z\_(l) - M

“(L)
A a - n —1

ELS TS (0 (4.42)

&él) M, is the resulting

right hand side. Substitution of the solution matrices into the

where is the first computed value of Ai and M
iterative equations (3.60) gives no additional information about the
numerical accuracy of the solution, since these equations are always
satisfied within the round-off error limitations. The fact that only

él and /A _ are needed for the accuracy test has some practical implica-

tions with respect to storage requirements, since it is not necessary
to store the intermediate solutions for ii as will be seen later. The
eguations for the corrections to Aél) are obtained in a way analogous
to the development of Equation (4.40).

This method for refining the solutions for Ei and Ai has been
found to have accuracy and rate of convergence which is very similar
to that described above for Equation (4.26). Computer programé for

performing the numerical solutions of these equations are presented in

Appendix C of this document.

4.4 Computation of the Gradient

It was mentioned in the introduction of this chapter that the
gradient of the expected value of the qguadratic performance index is
expressed by the last equation of Equation (3.75) when all the remaining
equations of the necessary conditions are satisfied. Thus, the gradient

is given by



87 [ai]’r T ¥
= 25 = - X(P,+P.) +23X P, + Z
=55 = “lsp) [EEatE) *2E R, ¢ L I, a0
T T - T

doa n V. ox n
=z T i1 ~0 T

+[——] [P +P ] x, +| ) [ ] A | x, + ———] D
opJ L—1 -1] =0 i=1 op —-i] =0 i op | j=1 —1 —i-1
; [ ] [Bai-l]

- triA 2. + e~ f (4.43)
i=1 ~n—i-1 op - =

where the elements of the e and f vectors are defined by:

322‘.0 L
;= 2tr|Bylmar| Bgp (4.44)
[ T] [Bza ] sa |t
= - - ¢ A
ST S N E A 1 AL (4.45)
and
nt = 10,0, ..., 1]

This can be verified by considering the first order variation of J with
- respect to P, which is expressed by Equation (3.74) when all other
terms of gf are set equal to zero.

The gradient expression given by Equation (4.43) must be evalu-
ated at any specified point in the free design parameter space in order
to determine the direction in this space, which leads to a smaller

value of the performance index. (It should be noted that the variable

parameters all assume their nominal values although the notation
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indicating this has been dropped for simplification.) For this purpose
it is necessary to compute the solutions to the constraining equations,
which must be satisfied for the current values of the free design

parameters. These are rewritten here for completeness:

T E-] —

ax+xa’ = -x
T
PoA+ A Py = -Q
+ A Z = -x - 0<i<n-1

2 TR L X0Yi-1 3

n-1 -
Bz~ .Z a;2; = X W-x4vo 4

i=0
Gyt A2 -y b, - 2p, 1= 0 l<izn
Lha-agh, -2p, 2= 0
ATE+ XA + U= - TX
PA+ AP, -WA = -Q (4.46)
At AER WA =0 .

where U is the function of the traces of the Ei matrices as given by
Eguation (3.46) and Pin is a component of the last column of the Py
matrix. The equations have been rearranged such that all the matrices
on their right hand sides are known functions of the design parameters,
p, which were defined in Sections 3.2 and 3.3. These matrices as well
as the coefficients of the equations must all be computed for the
current value of p before the solutions can be obtained.
This task is relatively straightforward, given the definition

of all the terms, but not necessarily simple, since it requires the

computation of all the coefficients of the closed-loop transfer



function and system initial conditions as well as the derivatives of
these terms with respect to the free design parameters, p, and the
variable parameters, §. These derivatives are also required for the
computation of the gradient and a numerical method for determining
them is described in Appendix B. It is of course possible to determine
analytical expressions for these derivatives, but in all but the
simplest problems this would be a tedious task or the form, in which
the design parameters enter into the system equations, would have to
be restricted. By computing numerical approximations to the derivatives
the method used to find the closed~loop system coefficients is unim-
portant and the design parameters may be entered into the system
equations in any desirable way.

The following table references the equations defining some
of the terms which must be computed before a solution to the gradient

expression can be obtained.

term equation
X, (3.11)
X, (3.27)
6X, (3.35)
v (3.42)
W (3.44)
av.

—— (3.69)
By

Table 4.1 References of definitions
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The remaining derivative terms are self-explanatory.

Once all the coefficients and constants have been determined,
the eguations for X, 22, Ei’ Ai’ gg, and El are solved using the
techniques of Section 4.2, which were found to be particularly
sultable for machine computations. The equations must be solved in
the same order as they appear in Equation (3.46), since only the first
two of these are independent of the remaining equations each of which
depends on the solution of an equation above it. The solutions are
then substituted into Equation (4.43) in order to determine the

value of the gradient. The value of the performance index is also

easily obtained by using Equation (3.24), which expresses J as:

J = tr[g (X + 3‘5‘)] (3.24)

The gradient expression for the integral square error performance
index contains two terms, representing the explicit effect of the
model, in addition to the quantities of Equation (4.43). These
terms are obtained from Equation (3,121) and the gradient of the
ISE index can be written as:

- - T T
0F oF da N 3% AT
ISE _ QPI —] % e, n +[ %0 Ecg

Y 5

(3.47)
3}9_ a_p_ LGE

é§>

-4

fize}

where QPI refers to the gquadratic performance index. Y and 53 are
the solutions of the constraining equations (3.118) and (3.120) which
must be solved in addition to the equations (4.46). The value of the

ISE index is evaluated by the following equation:

Trgg = Jppp * EI ‘9_ [g{_ - 25_{] (3.48)
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where X is the solution of Equation (3.117), which is not a function
of the system design parameters and needs only be solved once for any
specified model. All these equations are of the type discussed in
Section 4.2,

A few remarks of practical interest can be made about the calcu-

14

lation of the gradient expression. Referring back to Equation (4.43)
it is noted that the first term is postmultiplied by a vector wihose
only non-zero element is the last component. As a consequence, it is
only necessary to compute the last column of the matrix products of
this term, which reduces the number of computations required. It is
also of considerable practical importance that the Ai matrices do not
have to be stored for all values of i, because of the convenient way
in which they enter into the gradient expfession. The contrxibution
of these matrices to the gradient can then be updated iteratively as
corrections to the solutions are computed. The savings in storage
space can be considerable for high order systems, since n3 elements

are involved. All the Ei matrices must be stored, however, since

these matrices are solved forward, starting with i=0, whereas the A,

matrices are solved backwards, which makes it impossible to compute
the corresponding product terms in Equation (4.43), unless either Z,

or Ai are stored for all values of i.

4,5 Minimization Algorithm

The gradient expression of Section 4.3 can be used in a number
of procedures, which determine the minimum of the corresponding func-

tion, J, with respect to the specified variables, i.e. the free design

[eh
[
n
0
o
s}
s

parameters in this case. The simplest of these is the steepest
method whereby the values of these parameters are incremented i. the
direction of the negative gradient vector in order to achieve a

reduction in the value of J. The starting values of the paramecers

Fms
(84
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must be specified as well as rules for controlling the magnitude or
step size of the increments in the parameter space. This is basically
the technique, which has been used in solving the design examples of
this thesis. Thus, the change in the free design parameters at each

point is given by:

Sp = -s = =-sh (4.49)

where s is the magnitude of the step size and g is the gradient of J.
This change in p will always reduce the value of J, assuming that g
is not the null vector and the step size is small enough, such that
the change in J is approximately first order. The step size must be
controlled very carefully in order to insure reasonable progress
towards the minimum of J without invalidating the first order approx-—
imation.

The parabolic approximation has been found to be very useful
for this prupose. The change in J is then approximated to second

order in the direction of the gradient as:

T

T §p° G op (4.50)

g dp +

==
4
HH

O} =

where G 1s the second derivative of J with respect to p:

2

g= 2 g (4.51)
Ip
By substituting for Sp from Equation (4.49) AJ becomes:
2 -sg"nh+3s h'Gh (4.52)

The minimum value of AJ with respect to s can be determined by

differentiation and is obtained when:

3
1931
b



gTh

s = ;T;E—ET (4.53)
This value of s determines the step size in the direction of the
negative gradient from the current point in parameter space to the
minimum of J as expressed by the second order approximation. The
denominator of Equation (4.53) is, however, unknown but can be computed
at any given point at which the value of J and its gradient are known,

if the value of J is also known at another point along the direction

of h., Substituting these values into Eguation (4.50) and rearranging

gives:
gT g
T ~ 2 (= - g9; g
11191]31"‘7<J2 It sy )
s
1 gl
where ji and 32 are the values of J at the two points and s is the

distance between them. This expression must be positive in order for
AT to have a minimum along the direction of h.

The step size which gives the distance from point 1 to the
minimum value is then obtained from Equation (4.53) by substituting
the computed value of E? G h at this point. Basically two conditions

are specified, which cause a parabolic step to be taken:

—— the change in the performance index is positive and
the step size must be reduced
~— the scalar product of the gradient vectors at two

consecutive points in parameter space is negative.

The first of these needs no explanation since it indicates that the

minimum of J in the direction of -g has been overstepped. It is clear



however, that this minimum can be passed even though the value of J
does not increase as, for instance, in the well known ravine problem
where the process steps back and forth across a valley in the function
space, making very small progress towards the minimum. The second
condition is introduced in order to alleviate this problem by taking
a parabolic step whenaver the gradient at a given point has a negative
projection on the previous gradient. This means that, in three-
dimensional parameter space, the parabolic step is used when the
gradient turns through more than 90° from one point to the next. This
effectively prevents the straddling motion by locating the minimum
of a ravine, when this type of behaviour is detected.

The amount by which the step size can be modified by the
parabolic approximation has been arbitrarily limited, such that:

0.1 s, <s

< 1.5 s,
l —

P ER

where sp and s, are the parabolic and regular gradient steps,
respectively, The step size can, therefore, be increased as well as
decreased, which is of advantage in some instances. The following

means c¢f step size control are also included:

- step size is doubled if the difference between the
actual and predicted changes in J is within
a specified percentage value

-~ step size is halved if the computed curvature of J
is found to be negative when attempting a

parabolic step.

The first of these is used to determine the validity of the linear

approximation. 7Thus, 1f the step size is well within the linear



range it is likely that more improvement could be achieved in the
value of J if a bigger step size were used. The second condition
indicates a breakdown of the parabolic approximation and the step

size is arbitrarily cut in half which often results in a more accurate
value of the curvature calculation. The minimization process is

terminated when either of the following conditions are satisfied:

— the parabolic step fails to make progress in three
consecutive attempts
-~ both the actual and predicted computed improvements in J are

smaller than a specified value

There has been no attempt to optimize the rate of convergence here
but the procedure has been found to be reliable although convergence
is relatively slow in the vicinity of the minimum, as is the case

with most simple gradient techniques.
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Chapter 5. Application to Flight Control Systems

5.1 Introduction

A flight vehicle is typically operated over a wide range of
flight conditions with associated changes in its dynamic charvacteristics.
Furthermore, these characteristics are not always accurately known
for any given flight condition, especially before the vehicle has
been flight tested.

Consequently, a flight control system may often be required

3

to achieve some desirable performance despite uncertainties or specified

changes in the vehicle's dynamics. Thus, the design of flight control
systems is a logical area for the application of any method which takes
such changes and uncertainties into account. Before applying the

method of Chapter 3 to specific examples, it is appropriate to develop

a general approach to problems of this type.

5.2 A Sensitivity Design Procedure

The sensitivity design methqd of Chapter 3 was developed on
the basis of first order variations about a nominal time response of
the system. Its application is, therefore; likely to be most useful
when the trend in the system response, as these parameters are varied,
can be approximated by first order effects. This does not necessarily
mean that the changes in the parameters have to be small. It was
seen in the example of Section 3.10, for instance, that ﬁhe total
range of the output response deviations of a first ordeé system due
to +50% changes in static sensitivity was well predicted by a linear
approximation, although the deviations were not’symmetric about the
nominal response. The sensitivity index, based on the linear
deviations of the response, was alsoc found to a useful indicator of

the effect to these changes on the system response,



It was shown in Section 3.3 that the expected value of the
guadratic performance can be separated into two parts, which can be

writtens:

(5.1)

where J, is the value of the performance index when all the design
parameters take on their nominal values. JS expresses the effects
of uncertainties in the variable design parameters on J and is referred
to as an index of system sensitivity.

The basic approach to the sensitivity design, using the method
developed in thisvthesis, can now be stated in terms of the following

steps:

1) the configuration of the control system is chosen in an
attempt to satisfy the specifications on nominal system
response

2) the free design parameters are optimized by determining
the minimum of the nominal value of a suitable gquadratic

performance ‘index.

The choice of the feedback variables and the required compen-
sation is mainly determined by the desire to obtain good nominal
system performance at this stage. It is reasonable, however, to give
some consideration to the influence of the configuration on system
sensitivity. Some of the methods reviewed in Section 2.6 may be

useful for this purpose.
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The value of the sensitivity index can be computed at this point
for each of the variable design parameters in order to indicate the
relative importance of each variation on the system performance. If
the design obtained by these steps meets all the specifications for
all specified values of the variable design parameters, there is no
need to go any further, since a satisfactory désign has been found.

If, on the other hand, the design is satisfactory for nominal values
of the variable design parameters, but is unacceptable for the expected

variations of these parameters, the following step is performed:

3} the expected value of the performance index is minimized
for a specified value of the covariance matrix of the

variable parameters.

vathe system 1is still too.sensitive, the effects of the uncertainties
on the expected value of the performance index can be increased and
the minimization repeated. This can be done by multiplying the
covariance matrix of the parameter variations by a constant factor,
which scales these variations without changing their relative
relationship. The result is that more emphasis is placed on reducing
the sensitivity index than before. If the design is

still not satisfactory, it is concluded that the configuration chosen
does not have the capabilities to meet the system specifications under
the stated conditions of parameter uncertainty. A new configuration
must then be chosen and the process repeated.

5.2.1 Trade-off Parameter, u

For a fixed configuration which has a limited number of free
design parameters, the improvement in the expected value of the
performance index during step number 3 is usually obtained in such a
way that the nominal value, J,, is increased as the sensitivity index,

Jgr is decreased. This means that the nominal system performance,

7-}
o
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as measured by the nominal index J,, deteriorates somewhat, which is
the price that must be paid for lower sensitivity. The sum of the
changes in J, and JS must be negative, however, as long as the value

of J is reduced. This is so, because:

AT = AT, + AT, <0 (5.2)

Thus, the improvement in the sensitivity index, Js’ is always greater
than the corresponding deterioriation of the nominal value of the
performance index.

The ability of a given system configuration to reduce the
sensitivity of the nominal design can be judged on the basis of the
ratio:

83| - |aa,]
noo= (5.3)

jag|

which lies in the range

0 <u<l

where AJS and AJ, represent the effect of minimizing the expected
value of the performance index as compared with the values of Js and
J, corresponding to the minimum of J,. When the minima of J, and

J coincide, the value of Js cannot be reduced any further by minimi-
zation of J. PFurthermore, the ratio of Equation (5.3) has the limit
of zero in this case, as can be shown by considering a first order
change in J due to variations of the free design parameters. To first

order, this change must be zero at the minimum of J, such that:

6T = 8T, + 83 = 0 ' (5.4)
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This can be used to show that:

lim § = 1 - 1lim -—x=%— =0 (5.5}

If the value of J can be minimized without affecting the minimum
value of J,, it is possible to obtain an improvement in gseasitivity
without impairing the nominal performance of the system as expressed
by J,. In this case, u takes on a value of unity, since AJ, = 0.

This can only occur if the minimum value of J, with respect to the
free design parameters is'not a unique function of these parameters,
In addition, the minima of J, and Jg would have to coincide at some
point in the parameter space, which is an unlikely occurence.

Most designs fall somewhere in between these extremes. Thus,
the higher the value obtained for u, the more improvement can be
achieved in system sensitivity!for a given change in the nominal
performance.

It should be emphasized that the final design can only be
judged on the basis of how well it satisfies the original system
specifications. The minimization of the performance index, or its
expected value, is only a means to that end but does not guarantee
an acceptable design by itself.

The values of these indices can, however, be used to give an
estimate of the relative merits of different designs of the same
system. This is indicated by the fact that doubling the deviation of the
system response has ﬁhe effect of guadrupling the value of the sensiti-
vity index. The relative change of the sensitivity index may, therefore,
be used to estimate the corresponding change in the sensitivity of the

system response.



5.3 Flight Control Systems

Flight contrel systems are often separated into two main
categories of stability augmentation systems and automatic guidance
systems.

The stability augmentation systems are used to alter the basic
dynamics of the vehicle so that it may be controlled by a human
pilot with relative ease. The specifications for these systems are
set by the handling qualities requirements for the various vehicles,
which may result in a wide range of acceptable designs. These
reguirements are often expressed in terms of the desirable locations
of the dominant system mode singularities.

The automatic guidance systems, in addition to providing system
stability, are required to be compatible with guidance commands,
which determine the system response specifications. These specifica-
tions are often stated in terms of the time response of the system
to a standard input signal and may put a severe demand on the control
system, Thus it may be very difficult to meet the requirements for
a fast and well damped response to these input commanas'under the
conditions of uncertainty or changes in the vehicle characteristics.
This task may be made even harder by the existence of lightly damped
system modes, such as structural bending modes, which may become
destabilized in the attempt to satisfy the specifications on the domi-
nant modes,

Variations in the operating environment represents one of the
most common sources of change in the dynamics of a flight vehicle.
These changes are often very large, and cannot be considered on the
basis of linear perturbations from a single flight condition. 1In
many cases it is sufficient, however, to consider only a limited

number of representative flight conditions in order to insure that
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the performance specifications are met throughout the flight envelope.
Typically, these performance requirements are not the same in all
flight regimes of the vehicle. It is, therefore, unlikely that a
single design, with all the free design parameters set constant, will
be desirable for controlling the vehicle in widely different flight
conditions, although this approach has been shown to work in some
cases [19].

More commonly, some type of adaptation is likely to be used as
the flight conditions change from one regime to another, Thus, for
instance, some gains may be varied continuously or in increments as
a function of specified flight variables, and elements of compensation
may be engaged or disengaged depending on the operating condition.
Despite adjustments of this type, it is desirable that the system be
inherently insensitive to small changes in the flight conditions.
Closed-loop adaptation, using a reference model or parameter identifi-
cation, would probably be employed only when simpler technigues fail
to produce a satisfactory design. ‘

The dynamic characteristics of the flight wehicle are usually
described by linear perturbation equations about the equilibrium
flight conditions, which represent the operating environment of the
vehicle. The coefficients of these equations, i.e. the stability
derivatives, must be determined analytically or by experimental tests.
These tests may be made with representative models of the vehicle
under simulated conditions or by using the vehicle itself under
actual conditions, which results in the most reliable information.

It is often necessary, however, to design and build the flight control
system before any such operational testing can be performed, since the
vehicle may be unflyable without the control system. Prohibitive
costs may also make such testing impractical. Thus, the data on the

vehicle dynamics which is available to the control system designer



may contain considerable inaccuracies.

The characteristics of the bending motion of flight vehicle is
also of great importance in the control system design, since special
means of compensation is often required to insure the stability of
the bending modes. Typically, the mode shapes and natural frequencies
of the bending motion are not known accurately, since it is difficult
and often impractical to determine these experimentally. These
parameters are also likely to be subject to changes when varying flight
conditions are encountered., Variations in the performance of control
system components due to normal tolerances is another source of system
uncertainty. The effects of these variations can be controlled to
some extent by specifying their permissible range, but it is often
required that standard off~the-shelf components be used, in which case
the tolerances are imposed on the design. Common variations of this
type are changes in static sensitivity, which are usually accounted
for by specifying a minimum gain margin in order to prevent instability.
Similarly, phase margins have been used to insure stability despite

changes in the dynamic characteristics of the system components.

5.4 Booster Attitude Control System

The characteristics of the vehicle, which will be considered
here, were obtained from Reference [36]. This vehicle is of particular
interest becausé of the low damping and natural frequency of the
structural bending motion, which is sensed by the on-board instruments
and is fed back through the control system to the engine actuators.

Only the first bending mode is included in the vehicle dynamics,

which are described by the following equations of motion:
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B+ 17.9 B = Bc
B

c = B‘C(ec'ei’ei)

where the symbols represent these quantities:

§ = pitch angle of the rigid vehicle (rad.)

ei = pitch angle measured by attitude gyro (rad.)
éi = pitch rate measured by rate gyro (rad./sec.)
6, = commanded pitch angle (rad.)

o = angle-of-attack (rad.)
= engine gimbal angle (rad.)

8
Bc = commanded gimbal angle (rad.)

n = displacement of bending mode (m.)

bending mode freguency (rad./sec.)

e
o
It

damping ratio of bending mode

The positive direction of these angles and the bending displace-
- ment are defined in Figure 5.1. The rigid body motion is described

by the first two equations and control torques are exerted by deflection
of the thrust through the gimbal angle, R8. The last expression
indicates that the commanded gimbal angle depends on the commanded
pitch angle, which is supplied by the guidance system, and the measured
pitch angle and pitch rate. The form of the relationship remains to

be determined. The bending mode displacement is assumed to be excited

only by the deflection of the thrust vector, neglecting the aerodynamic

et
o
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x rigid body
axis

elastic axis

gyro station

Figure 5.1. Geometry of elastic booster

1686



forces on the body. The actuator dynamics, relating the commanded
and actual gimbal angles are approximated by a first order lag. Both
pitch angle and pitch rate are measured by gyros located at the same
station in the vehicle. ' Their outputs are given by the following

expressions:

ei = 0 + Abn
and
él =8 + Abﬁ
where
Ab = slope of the bending mode at the instrument-station

(rad./m.)

The values of the bending frequency and mode slope are assumed
to be inaccurately known with a normal distribution about their mean
values. They are, furthermore, taken to be uncorrelated with the

following statistics:

.

b = 2,317 rad./sec.
X‘b“ = 0.02 rad./m.
T2 2 - 2
(wb—wb) = (0,05) wy
T2 2 =2
(Ab—kb) = (0.1) Ab

The standard deviation of these parameters is, therefore, 5% and 10%,

respectively.



The nominal response of the system to commanded changes in the
pitch angle should be as fast as can be practically achieved with an
overshoot of no more than 20%. The response should furthermore remain
stable for at least two standard deviations of each of the structural
parameters while the other is held constant at its mean value.

The transfer function relating the rigid body pitch angle to

the gimbal angle can be determined from the equations of motion as:

B(s) _ .0733 (s+.014) (5.7)
8(s) -~ (s-.0411) (s+.294) (s-.242) *

Since only the short period dynamics are of interest here the pole
and zero close to the origin may be cancelled assuming that the
stability of the cancelled mode will be considered separately. This

gives:

B(s) _ .0733
B(s)y  (s+.294) (s-.242) (5.8)

The transfer function of the bending mode displacement is obtained

from Equation (5.6) as:

- 5 15.83 . (5.9)
s” + 2(.005)wbs + W

w3
— o~
~—A

The time constant of the gimbal actuator is very small and has a
negligible effect on the system response. The gimbal angle is,

therefore, assumed to be equal to the commanded gimbal angle:

B(s) = BC(S)



The transfer functions of the rigid wvehicle and the bending
motion can now be added in order to give a single pitch angle transfer
function for the flexible vehicle. With minor approximations this

transfer can be expressed as:

2
~15.83 A (s%+.0525-.0046 D
0. (s) . b . . )
i _ b (5.10)
B(s)  (s+.294) (s-.242) (s7+2(.005) u s+u?)

This transfer function gives the relationship between the pifch angle
sensed by the attitude gyro and the gimbal deflection. The block
diagram of the attitude control system is shown in Figure 5.2, where
pitch rate is fed back, in addition to the attitude 'feedback, in order
to stabilize the rigid body mode. The root-locus of this system
without any compensation in the forward path is plotted in Figure 5.3
for the nominal values of w, and Ab with the gain of the pitch rate
feedback equal to unity.

If no compensation is included in the system it is clear that
the bending mode is unstable for all practical loop gains. A second
order filter can be used to improve the bending mode behaviour by
giving the proper amount of phase-shift at the bending frequency. The

transfer function of this filter is:

w2
Gf(s) = > £ ~ (5,11}
s° + 2(.707)wfs + we

where the damping ratio has been chosen, but its natural frequency, Wer
will be optimized by the design procedure. The root-locus of the
system with the bending filter included is also shown in Figure 5.3

for a single value of we. It is seen that considerable improvement

can be achieved in the damping ratio of the bending mode by using

this compensation.
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In addition to the natural frequency of the bending filter
two other free design parameters are specified. These are the static
sensitivity of the compensation and the amount of pitch rate feedback,
denoted by Py and Py respectively.

In order to apply the model performance index to this problem
it is necessary to select the transfer function of a reference model,
whose characteristic coefficients are then used to compute the weighting
matrix of the system states. This model represents the desired response
characteristics of the total system to a commanded change in the pitch
angle, The transfer function chosen for this purpose is of fourth

order and is given by:

8.(3) 2
i - (1.8)
\ec(s) = (5.12)

(5242 (.707) s+ (1) %) (s242(.2)1.85+(1.8) %)

where 8i is the pitch angle response of the model as it would be
measured at the gyro station. The first of the two second order modes
of the model corresponds to the desired rigid vehicle mode and has been
chosen to be well damped with a natural frequency of 1 rad./sec. The
root-locus of Figure 5.3 indicates that the closed-loop poles of the
vehicle can achieve this damping ratio and natural frequency. The
system transfer function is non-minimum phase, however, and cannot
be expected to respond as fast as the model, since the zero in the
right half complex plane has a time delaying effect on the response.
The second mode of the model transfer function represents the
desired bending mode characteristics. A rather moderate value has
been chosen for the damping ratio in order to prevent undue emphasis
on stabilizing the bending mode. The natural frequency was chosen

somewhat lower than the natural bending frequency, recognizing the
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fact that the corresponding closed-loop system mode has a tendency
towards lower frequencies, as can be seen from the root-locus of
Figure 5.3.

From Figure 5.2 it can be determined that the system closed-
loop transfer function has six poles and two zeros. Since the model
is fourth order and contains no zeros, both system and model have the
same number of excess poles over zeros, which results in a constant
weighting matrix according to the development of Section 3.5. The

form of the weighting matrix is given by Equation (3.86):

te
H
(k=X
f e

where d is an n-dimensional vector containing the coefficients of the

model's characteristic equation, which in this case becomes:
& = [ 3.24, 5.305, 5.258, 2.134, 1.0 ]

The performance index, which is to be minimized, is then written as:

o

3=/ Xy Q X, dt+€2f6§T26§_dt (5.13)
0 0

where the system state and its deviation are described by Equations
(3.5) and (3.15), respectively. Only the roots and static sensitivities
of the open-loop transfer functions have to be provided to the computer
programs of Appendix C, which then compute the required closed-loop

coefficients.
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It is convenient to use a weighting constant, EZ, to change
the emphasis on the sensitivity index relative to the nominal part
of the performance index. Thus, when €=1, J represents the expected
value of the model performance index for the specified parameter
covariance matrix, which determines the magnitude of the second integral
of F. Setting €=2, for instance, is completely equivalent to multiplying
the parameter covariance matrix by the square of €, as can be shown
by using the linear relationship between §x and the parameter variations,
$&. The effect of the parameter uncertainties on the performance
index can, therefore, be changed through the value of € without

disturbing the interrelationship between their variations.

The performance index may then be written as:

and the trade-off parameter, u, becomes:

| AT |

wo= 1- —%
€ ]AJSI

5,4.1 Sensitivity to Bending Frequency Variations

The design method is first applied to the problem considering

only the effects of uncertainties in the bending mode frequency. Thus:

£ = w,
£, = E; = 2,317 rad./sec.
R = 66 = 0.0025-T°

The computer programs in Appendix C were used to minimize the performance
index of Equation (5.13), starting with the weighting factor €=0, which

results in the model performance index design based on the nominal



value of Wy, - Next the weighting factor was increased somewhat
arbitrarily to e=6, which leads to the minimum expected value of the
model performance index for six times the specified variance of Wy, -
The corresponding values of the free design parameters are given in
Table 5.1.

It can be seen from this table that the effect of including
the sensitivity index in the performance index is to decrease the
static sensitivity, increase the rate feedback, and decrease the
natural frequency of the bending filter, when compared with the
solution based on the nominal value. These changes are all relatively

small, but it is interesting to compare the values of the nominal

performance index and the sensitivity index for these design solutiocns,

design number
parameter 1 2 3
€ 0 6 12
Py 2.48 2.16 1.9¢
Py 2.12 2.32 2.40
Ps 1.58 1.40 1.36
J, 2.05 2,31 2.54
Jg 0.062 0.0071 0.0039
J 2.05 2.56 3.10
H 0.87 0.77
Table 5.1 Values of free design parameters and
performance indices, with uncertainties
in wy
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These values are listed in Table 5.1, which also gives the values of
u for the two designs with non-zero weighting of the sensitivity index.

Design no. 1 represents the results of minimizing J, without
any regard for sensitivity. Comparing the values of the performance
indices for this design with those of design no. 2, it is clear that
the minimization of J(€=6) has the effect of reducing the value of Jg

by an order of magnitude, at the same time as the value of J,,
representing the nominal system performance, is increased by a much
smaller amount.

It was suggested in Section 5.3 that the ratio denoted by u

and defined in terms of the chénges in J, and Js’ can be used as an
index of the systems' ability to reduce its sensitivity to a specified

parameter variation, using the sensitivity of the nominal design as

a reference. For design no. 2, this ratio is 0.87;since O<u<l with
the lower limit indicating no possible improvement in the sensitivity
index ( or J), this system may be rated as responsive to reduction in
sensitivity to the parameter under consideration.

The sensitivity of the system as measured by JS can be reduced
even further by increasing the weighting coefficient of the sensitivity
term. The results for e=12 are given in Table 5.1 as design no. 3.
The effect on the free design parameters is the same as before with
further decrease of the static sensitivity, a slight increase in rate
feedback and reduction of the filter frequency. The reduction in Js
from 0.0071 t0 0.0039 in going from design no. 2 to design no. 3 is

considerable, although nowhere as significant as obtained by design
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No. 2. The price that must be paid in terms of a deteriorating
nominal performance has also become higher per unit improvement in
Js as indicated by the change in J, when compared for designs no. 2
and no. 3. This fact is also reflected in the value of u for design
no. 3, which has decreased somewhat due to the effect of diminishing
returns.

These relative changes in the performance indices must, however,
be interpreted in terms of the time responses of the corresponding
system designs in order to be meaningful. The normalized response of
design no. 1 to a step input in commanded pitch angle is shown in
Figure 5.4. The pitch angle response of the system is similar to
the model's response except for the time delaying effect of the non-
minimum phase characteristics. The overshoot is 17% which is within
the 20% limit and the settling time to within 5% of the steady—-state
output is 11.8 sec. The same time delaying effect is noted in the
pitch rate response, which is sim;lar to the model's response in other
respects. The sensitivity functions corresponding to pitch angle and
pitch rate is also shown in Figure 5.4. These indicate a strong
tendency towards an oscillatory response with changes in the bending
frequency, Wy, - The root-locus in Figure 5.5 shows that the structural
mode has been well damped but the mode corresponding to the bending
filter has a damping ratio of only 0.15. The period of the sensitivity
functions indicate that this mode may be adversely affected by changes
in the structural frequency.

The effect of decreasing Wy by 10% from its nominal value is

given by Figure 5.6 which shows that the system response is unstable
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for this wvalue of the bending frequency. A 15% reduction in Wy is
seen to result in a fast divergence of the response. Design no. 1 is,
therefore, unacceptable, since it does not satisfy the requirements

on stability when Wy changes by two standard deviations. The case

of increasing w, causes no difficulties as could be expected from the
fact that the poles of the bending mode move further away from the
bending filter poles.

The response for design no. 2 is shown in Figure 5.7. The
pitch response has slightly less overshoot than design no. 1, but its
settling time is somewhat longer or about 13.0 sec. This is reflected
in the pitch rate whose peak is reduced when compared ﬁith design no.
1. The really significant effect is noted in the sensitivity responses
which have much smaller amplitudes than before and increased damping.
The root-locus plot in Figure 5.8 also indicates that the damping
ratic of the bending filter mode has been increased to 0.27 with a
slight decrease in the damping ofAthe bending mode. The importance
of these differences in designs no. 1 and no. 2 are shown by the off-
nominal responses in Figure 5.9. For a 10% decrease in w', the
raesponse of design no. 2 is clearly stable and, furthermore, the
pitch angle response still satisfies the specifications of less than
20% overshoot. A 15% reduction of Wy puts this design on the verge
of instability, but the residue of the unstable mode is significantly
less in this case than for design no. 1, which means that the approach
of instability will be much less severe for design no. 2.

Thus, design no. 2 satisfies the requirement of a stable response
for a 10% deviation of Wy with a comfortable margin and a relatively
smooth response. The pitch response of design no. 3 is shown in
Figure 5.10. The increased emphasis on the sensitivity of this

design is seen to further reduce the amplitude of the sensitivity

response which is obtained at the expense of an increase in the
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settling time to 15.6 sec. as compared with 13.0 sec. for design no. 2.
The off-nominal responses of this design are shown in Figure 5.11 for
decreasing bending frequency. For a 1l0% decrease, the response is
somewhat better damped than the corresponding response for design no. 2.
‘A 20% variation in w, is now required in order to drive the system
unstable. Design no. 3, therefore, meets the requirements on stability

with a wider margin than design no. 2.

5.4.2 Sensitivity to Wy and Ab

Addition of the slope of the bending mode as an uncertain
parameter to the design process is easily accomplished using the

present method. The vector of variable parameters becomes:

T _
é —[wb'kb]

with a nominal value:

€Y = [ 2.317, 0.02 ]

and the covariance matrix:

.0025 w

jeo
Il
o NI

L2
0 .01 kb

since the uncertainties of Wy and Ab are uncorrelated. Using a
weighting factor of e=6 as before, the performance index was
minimized for this value of the covariance matrix. The solution is

referred to as decsign no. 4 whose parameter and index values are

listed in Table 5.2.



design number

parameter 1 2 4
£ 0 6 6
Py 2.48 2.16 2.15
P, 2.12 2.32 2.27
Py 1.58 1.40 1.40
T, 2.05 2.31 2.34
Jé 0.075 0.0098 0.0088
J 2.05 2.664 2.660
M 0.86

Table 5.2 Values of free design parameters and performance

indices with uncertainties in both Wy and Ab
By comparison of the‘free design parameters for design no. 4 with those
of design no. 2, it is seen that these two designs can be assumed to be
identical for all practical purposes. The effect of the uncertainty
in Ab on the sensitivity index may be determined for designs no. 1 and
2 as the difference between the values of Js in Tables 5,1 and 5.2

for each design. This is so because of the independence of the two

sources of uncertainty which means that JS can be written:

J = J + J (5.14)
bt S

where the contribution of each variable is obtained by setting the
other variable equal to its nominal value. Thus, for design no. 1 the

contribution of the uncertainties in XA, to JS is given by:

b
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Similarly for design no. 2:

J * = 0.0026
“p~ ¥

Thus, it is clear that the system is less sensitive to changes in the
slope of the bending mode than to changes in the bending frequency, as
indicated by the contributions of these two parameters to the sensiti-
vity index. The improvement in the sensitivity of the system %o
uncertainties in Ab is, therefore, much less spectacular than the
reduction in sensitivity to uncertainties in the bending frequency.

The sensitivity functions of the pitch angle responses of these
two designs with respect to Ab are given in Figure 5.12. The
amplitude of this sensitivity function for design no. 1 is much smaller
than the amplitude of the sensitivity function with respect to W, as
may be seen by comparison with Figure 5.4. A given percentage variation
of wy, may be estimated to result in almost four  times as large a

deviation of the-output as the same percentage variation of Aba This

difference in sensitivity to w  and kb is considerably less for

design no. 2.

Comparison of the two sensitivity functions in Figure 5.12
indicates a significant reduction in sensitivity to Ab in going from
design no. 1 to design no. 2. This is also verified by the off-
nominal responses for these designs, which are shown in Figure 5.13
for a 20% increase in Ab from its nominal value. Design no. 1
exhibits a very lightly damped mode, which may be identified as
corresponding to the bending filter. The response, furthermore, has
a 30% overshoot. Design no. 2 on the other hand has a relatively
well damped response with an overshoot of only 11%. This design,
therefore, is seen to meet all the specifications on the system
despite the specified variations of the bending frequency and bending

mode slope.
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5.5 Aircraft Attitude Control System

The longitudinal dynamics of a high performance aircraft are
described in Reference [44] in a very convenient form for application
of the present design method. In particular, the uncertainties in
the vehicle's dynamic characteristics are described by the joint
distribution of the dimensional coefficients of the equations of
motion at each flight condition. The vehicle possesses two lightly
damped bending modes which must be stabilized but whose freguencies
are inaccurately known. The design of an attitude control system for
this vehicle will be considered here for a single flight condit:ion.

The longitudinal short period rigid body dymanics of the aircraft

are described by the following set of linearized differential equations:

3

O =7Z o+ 6+ 2,8
§ “e
§ = Maa + Mée +M6 Ge
e
§ = =208 + 20 §
e e e
c
ée = de (GC,G ,Gi)
c c
where
o = angle-of-attack (rad.)
& = pitch angle (rad.)
8, = measured pitch angle (rad.)
ée = glevator deflection angle (rad.)
5e = commanded elevator deflection (rad.)

"
(S o]
e



Za’ Z5 ’ Ma, Mé and M6 are the dimensional coefficients which are known
e e

in terms of a Jjoint normal distribution

£(g) = L exp [ - 2(6-0)T R™Y (£-9)] (5.16)

(2m)5/2 (]BI)l/Z

where the vector § consists of the five coefficients:

T ‘
£ = [ ZOL'Z 'MOL'Mé'M(S ]

68 e

R is the covariance matrix of §, given by:

The mean values of the dimensional coefficients are given as
functions of Mach number and dynamic pressure. The covariance matrix
R, is given by Table 5.3 in terms of the mean values of the dimensional
coefficients.

The structural response dynamics are described by the equations

of the first two bending modes:

n. + 2¢£ w ﬁ + w n. = ¢ §
1 bl bl 1 bl 1 e
(5.17}
%2 + 2£b Wy 62 + wi n, = Y §
2 °2 2 €

where ny and n, are the deflections of the first and second bending

modes at a specific reference station. The elevator input coefficient

is given by:
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where V is the velocity of the aircraft in ft./sec.

The bending frequencies are assumed to be normally distributed with

the following means and variances:

£
il

30 rad./sec.

by
w. = 50 rad./sec.
b
2
(w, =B, )2 = (.12 -
1 1 1
— 2 2 2
(w, =-w, ) = (0.1) LA
by, b, b,

The effect of the bending motion on the measured pitch angle

and pitch rate is given by:

and

b. N1 Ab n, {(5.,20)
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where Ab and Ab are the slopes of the bending modes at the location
1 2
of the gyros, given by:

0.025 rad./ft.

P
]

-0.040 rad./ft.

The transfer function, describing the pitch response of the rigid
vehicle to an incremental deflection of the elevator, can be obtained

from BEguation (5.15) as:

M [s - zu + Mazse/MGe]
5 (5.21)

Se(s) B s[s® = (Zu + Mé) s + (ZaMé - Mu)}

The transfer function of the actuator is given by:

§ (s) 20
= e (5.21)
§ (s) s + 20

and the transfer functions of the bending deflections are obtained

from Eguation (5.17) as:

ny (s) _ Y
5 () s? + 28, s+ wil
(5.22)
nq (s) "
6e(s) s2 + 2§b2 wbzs + wéz



The design of the attitude control system will be considered
for the flight condition corresponding to the following Mach number and
dynamic pressure: M = 1.03 and g = 1160 lbs./ft? The corresponding

mean values of the dimensional coefficients are given by:

— -1

Za = =2.275 sec.

EG = =0.459 sec-.-l
e

Ma = -46.0 sec?l

ﬁ@ = -45.9 sec.t
e

— -1

M = =2,275 sec.

e

The covariance matrix of the uncertainties in these coefficients is
then easily obtained from Table 5.3 by substitution of these values.
The desired response of the system to an input command as sensed by
the attitude gyro is described by a fifth order reference model whose
transfer function is given by:

s = 38880 (

(s+1.2) (s242(.5) 65+(6) %) (s2+2(.3) 30s+(30) %)

(831
[
422

This is basically a third order model, which describes the dominant

behaviour of the desired response. Its pole locations were determined
from normalized step responses for third order systems as given in

Reference [5]. A second order mode ig then added in order to agcount
for the bending motion which is regquired to be stable and well-~damped
for two standard deviations of the bending freguencies wbl and wbz
from their respective nominal values. The frequency of this model

bending mode is chosen to be equal to the frequency of the first

bending mode of the aircraft, but a damping ratio of T = .3 is



spacified. A desired pole location of the second bending mode is not
included in the model, since the contribution of this mode to the
response is likely to be insignificant as long as it is stable. The
weilghting matrix Q is easily determined from the coefficients of the
model as before.

A block diagram of the system is shown in FPigure 5.14. Both
pitch angle and pitch rate are fed back, but additional compensation
is required to stabilize the system. This may be verified from
Figure 5.15 which shows the root-locus for this system for an equal
gain of the two feedback signals but without any compensation. The
first bending mode is seen to be marginally stable or unstable in
this case. In the interest of simplicity it was decided to use a lag
filter in an attempt to stabilize this mode. The root-locus departure
angles of the first bending poles cannot be changed in this manner,
however, without affecting the departure angle of the poles of the
second bending mode. For this reason it was found necessary to use

two second order lags in order to stabilize both bending modes

simultaneously. The transfer function of this filter is given by:

w2 wz

~ £, 75,
(s +2(.7)wf s+wf Y (s +2(°25)wf s + we )
1 1 ) 2 2

where the damping ratios have been chosen, leaving the natural
freguencies as free design parameters. A lead-lag is also added in
order to counteract the adverse effect of the bending filters on the
second order rigid vehicle mode. The pole and zero locations of the
lead-lag are both designated as free design parameters. Thus, six

free design parameters must be selected by the design process:

200



e SAS TOARUOD SPNGTITEe 3Jeioxte Jo wexbeTp ¥ooTd yrC¢ eanbitd
+ _(Pdys)d
S 9
be1-pear
[4 Ty €
q q."q
m+s M s
Z + wm+m A
(4
o Yy
mon.maﬁwch Ucm
T T, T
Qa+m Q3 QwN+ S
M Z Z
* o Ty
spow butpusg pmH
o (Pars’d(sz ) g+, ) (Edrstd(Le) 2, 9)
(_m+s M 22+_S)S 0745 -
¢ ‘o le 9 va€alq
® 0z +
e 9 =) ° Z ¢ e
((z+8) "W e ® 6
sotweulp Apoq pibra aiojzenioe

a93TTI burpusq

201



- 60

- 40

-20

- : X ,
~60 -40 -20 20

-—-40

-—60

Figure 5.15. Root locus with equal pitch and pitch
rate gains but without compensation.
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p; = static sensitivity of compensation

Py, = gain of rate feedback

Py = first bending filter frequency
P, = second bending filter fregquency
pg = zero location of lead-lag

pole location of lead-lag

o]
o
il

From Figure 5.14 the complete system may be observed to have 13 pocles

and 6 zeros.

5.5.1 Sensitivity to Variations of Wy and w
1

First the nominal design was obtained by minimizing the nominal
value of the performance index with respect to the free design
parameters setting € = 0. The value of the sensitivity index due to
the uncertainties in the bending mode frequencies was also computed

using the following covariance matrix:

.01 Wy 0

|
il
st

0 .01m§
2

since the uncertainties in w and w are uncorrelated. The resuliting

By Py

parameter and index values are given in Table 5.4 as design no. 1.
One of the interesting aspects of this solution is the low value
which is chosen for Py the natural frequency of the first bending

filter mode. This value is actually smaller than the natural

frequency of the rigid body mode. The freguency of the second bending
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design number
parameter 1 2
€ 0 1
Py .617 .563
<3 .155 .155
P3 2.57 2.41
Py 38.4 15.7
Py 6.29 4.16
Pg 27.2 22.0
T, .297 .380
Jg 1.44 .034
J 1.737 .414
W .94

Table 5.4 Values of free design parameters and performance

indices with uncertainties in both Wy and w
1 2

filter mode, Py is selected inbetween the bending frequencies.

b

The solution which is obtained by minimizing J for e=1 is
referred to as design no. 2. The most significant effect on the
free design parameters, when compared with design no. 1, is that the
freguency of the second bending filter has been decreased by more

than cne half. Other changes are relatively minor with a slight

[N

ecrease in static sensitivity and an increased amount of lead-lag

o

s shown by the increase in the ratio of Pe to Ps- The effect of
these changes on the sensitivity index is very significant, however,

reducing its value by a factor of 40. The trade-off between J, and
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Js is quite favourable as indicated by the high value of u.

The normalized step response of design no. 1 is shown in
Figure 5.16. The pitch angle response is seen to approximate the
model response reasonably well, although the system response is
somewhat slower. A similar agreement is observed for the pitch rate
responséy which indicates a time delaying effect in the system
response, No bending motion can be discerned in the pitch and pitch
rate responses. The second and third derivatives of the pitch angle
show the effect of the bending motion very clearly, however, as
lightly damped high freguency oscillations which can be traced to the
first bending mode. No signs of the second bending mode can be
observed. The sensitivity functions in Figure 5.16 are also a good
indicator of the low damping characteristics of the first bending
mode. The low damping of the structural bending motion is likely to
be very undesirable from the pilot's point of view and may also
affect the fatigue life of the structure in the long run. It was
found that +20% changes in the first bending freguency did not produce
any extraordinary changes in the bending response or result in
additional stability problems.

The step response 6f deéign no. 2 is given in Figure 5.17 which
shows that the reduction of the sensitivity index has had a major
effect on the sensitivity of the system to changes in the first
bending mode frequency. This can be observed by comparing the
sensitivity function for designs no. 1 and no. 2 which show that the
amplitudes for design no. 2 are significantly smaller. The reductiocon

in the system's sensitivity to changes in w, was achieved by reducing

. 1
the natural frequency of the second bending filter mode from 38.4
rad./sec. to 15.7 rad./sec. This has a significant effect on the

first bending mode without affecting the stability of the second

bending mode.
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Comparison of the step responses for the two designs in Figures
5.16 and 5.17 shows that the initial part of the pitch angle response
has been slightly slowed down by the effort to reduce the sensitivity
of the system. The change in the settling time is insignificant,
however, being less than half a second. The important improvement
in the response may be observed from the second and third derivatives
of the pitch response. The effect of the bending motion on the
second derivative has virtually disappeared and is very small in the
case of the third derivative. The structural response of design no. 2

ig, therefore, preferable by far to the response of design no. 1.

5.5.2 Sensitivity to Variation of Dimensional Coefficients

The uncertainties in the knowledge of the dimensional coefficients
is expressed by the covariance matrix in Table 5.3. The corresponding

sengitivity index for design no. 1 was found to be:

Jg = 0.03

This is a very small value in comparison to the sensitivity index
which was obtained for this design with respect to the bending
frequencies. No reduction of the sensitivity index was achieved by
minimization of the expected value of the performance index. It is
therefore concluded that design no. 1 corresponds approximately to
the minimum value of JS in this case, since otherwise it would be
possible to cbtain some reduction in its value.

Figure 5.18 shows the sensitivity functions of the output
response of design no. 1 with respect to each of the five dimensional
coefficients. The off-nominal response of the system is also given

in Figure 5.19 for two standard deviations of M which is the most

6 1
e
critical of these parameters. Since all the dimensional coefficients
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are correlated it would be unrealistic to vary only one of them inde~-
pendently. The response in Figure 5.19 is therefore computed by
using the conditional means of the four remaining coefficients given

the specified variation of M6 .
e

5.6 Discussion of Results

The first design example shows that the sensitivity design
method developed in Chapter 3 can be used effectively in order to
reduce the effect of parameter uncertainties. Moreover, it may be
done in a way which is consistent with meeting realistic response
requirements. Thus, by varying the weighting of the sensitivity
index it has been found possible to control the sensitivity of this
system with relatively minor changes in the nominal response. This
property will of course vary from system to system as indicated by
the u trade-off parameter.

The second design example differs from the previous one in
that the specified uncertainties of the design parameters were not
found to have a critical effect on the response of the system. The
uncertainties of the structural bending frequencies were, however,
found to have a significant effect on the value of the sensitivity
index. This can be attributed to the light damping of the first
bending mode. Thus, a moderate variation of that mode can have a
large cumulative effect when integrated over a long time period.
Reduction in the sensitivity of this bending mode was achieved by
increasing the effect of the bending filter at the first bending
frequency. The sensitivity index, therefore, could be used to detect
the low damping of the structural response. The reduction of the value
of this index was found to be an effective tool for suppressing the

undesirable excitation of this response.
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The low sensitivity of the nominal design to uncertainties in
the dimensional coefficients was reflected by the small contribution
of the sensitivity index to the expected value of the performance

index.



APPENDIX A

Derivation of Closed-Loop Pole Sensitivities

In order to derive an expression for the derivative of a closed-
loop system pole with respect to an open-loop parameter, some relation-
ship between the open-loop and closed-loop system characteristics must
be used. A particularly convenient relationship of this type is given

by:

where GOL is the total open-loop transfer function, and p; and §j are
the closed and open-loop poles respectively, of a single-loop system.
The validity of Equation (A~1l) should be clear from the well-known fact
that the zeros of 1 + GOL are the closed-loop system poles and the pcles

of 1 + GOL must be the same as the poles of GOL itself. The system
is also assumed to have at least one more open-loop pole than zeros.
Taking the derivative with respect to an open-loop parameter,

£, on both sides of Equation (A-1l) gives:

14

2 (s-p.) n 9P n api
9G ! Pj —d 1
oL _ i=1 LN 8 (A~2)
ag n L& = L - (A—2)
T (s=P.) j=1 (s pj) i=1 (s pi)
=1

where it is assumed that all the open and closed-loop poles are distinct.

Using Equation (A~l) this equation can be written:

-
.Z T, . . T T (A-3)
i=1 (s—pi) j=1 (s—pj) 1+ Gor,
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Multiplying both sides of this equation by (s—pk) and setting s = Py

gives the following result:

9G
OL
2§k - [P (a-4)
1+ GOL

S=pk

where only one term due to the left hand side of Equaticn (A-3) remains.
The rest of the terms all become zero when s = Py s since Py is distinct
from the remaining open and closed-loop poles.

SOL’ éj’ and éj can now ke substituted for £ in crder to find
the sensitivities of the kEE closed-loop pole to changes in these

parameters:

G
3 [(s -y asOL (s - p) C.. |
P oL _ 1 'S T B! Sor
38 S
OL 1+ GOL _ OL 1+ GOL _
s = pk s = pk
(A-5)
which is obtained by substituting the follewing relations:
. m <
S m (l - <=
Cor _ 3 OL i1 Zzi | _ Sov (3-6)
Sor Sow n i SoL
T (1L - =—)
j=1 D
J Pj
The sensitivity of Py with respect to SOL is then expressed by:
op (s - p) G
i S } k) Cor (a-7)
OL 3801, /Sor, _ 1 + Gy,

s=pk

Substituting ﬁj for & in Equation (A-4) gives:



]S (s - p) 5. (s -p) G, |
sk = P L P3 I Px oL
Py 3p.. B.(s - P.) 1 + ¢
J P 1+ Gy P Py oL |
s'_"pk , ST“;]?]{
(A-8)

where the following expression has been sutstituted for the derivative

of GOL:

(A~9)

Substituting the expression for Sg in Egquation (A-8) then yields:
OL

(A~10)

The sensitivity of Py to the open-~loop zeros is similarly obtéined by

replacing & by Ej, which gives the following expression for SE

J
S}:z: - _k OL (A-11)
j Z. Z, -
J 5 ( 3 Py !
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APPENDIX B

Calculation of Derivative Matrices

In order to compute the derivative matrices of Section 4.3 it

is sufficient to obtain derivatives of the following form:

3g 3q 32q

39 , 29 , o9qa
3L 7p; 9,

where g is a scalar function of the design parameter vectors p and £:

g= q (p, &) (B~1)

For a given set of values of the design parameters, the first

derivative of g with respect to p; can be approximated by:

g alp; + 4p;) - qlp; - 4p;)

8pi 2Api

(B-2)

where all the parameters are held constant except for P,/ whose

increment, Api, is some fraction of its nominal value as an example.

Similarly:

5q qalgy + A85) - qlE; = Ay)

98, 208,

t

-
f

o

An approximate expression for the second derivative of g with
respect to P; and Ej can then be obtained as follows:

3g 5q _
aij(pi + Apy) - 5?;(Pi fpy)

R
9p; |98 20p.

1

(B~

P




Equation (B-3) is then used to evaluate the first derivatives in

Equation (B-4) which gives:

i°7]
q(pi'i*Apiﬂ‘;.'l'AEj) - Q(Pl“‘APlrEJ-AEj) = q(Pl—APlrEj*‘AEj) + q(pl-APl:EJ'AEJ)

40p; BE,
(B-5)

In order to compute these three derivatives of g with respect to two

of the design parameters it is, therefore, necessary to evaluate
eight different values of gq. This number can be reduced to fou: by

using the following approximation:

+Ap, ,EL+AE, (HAD. £ ~AE,
alpy +ipy oEotBE,) & alp g, L =08, 5-6)
2

112

q(p;+4p;)

This result can then be substituted into Equation (B-2) to give:

9 =~
Py
q(pifﬁpi,€j+A£j) + q(pi+Api,Ej-A£j) = q(pi-Api,€j+A£j) = q(pi-Api,Ej—AEj)
4Api

(B=T)

An analogous expression for the derivative of g with respect to Ej is

obtained by interchanging ps and €j.
Clearly, Equations (B-5) and (B-7) require the same values of g,
which only needs to be evaluated four times. The accuracy of the

first derivatives, as expressed by Equation (B-7), is less than that

|38
N
N



obtained by using Equation (B-2) because of the error introduced by
Equation (B-6). This deterioration in numerical accuracy must be
weighed against the reduction in the computation of g, which can be
important when g is a complicated function of the parameters. When g
is an element of an n-dimensional vector, these derivatives must be
found for all possible combinations of the vector components and the
design parameters.

If p is a k-dimensional vector and § is f-dimensional this
means that ne- (k+&) first derivatives and n<¢ke% second derivatives
have to be computed. Hence, the savings achieved by using Equation
(B-7) become relatively smaller as the number of design parameters
increases. This is reflected by the ratio of the number of evaluations
needed for determining the first and second derivatives when these
are calculated separately. This ratio expresses the additional effort

required for computing the first derivatives separately and is given by:

= 2mnelktt) 141 1 -8)
P= Tkt 2[z+kJ (B-8)

since two values are needed for each first derivative and four for
each second derivative. For large values of 2 and k this ratio
obviously becomes small.

These approximations have been found to be relatively accurate
in calculating the derivative matrices of the closed-loop characteristic
coefficients and the initial condition vector. The increments of the
- design parameters have been chosen to be 5-10% of the current value

of these parameters.






APPENDIX C

Computer Programs

The computer programs which are listed in this appendix can be
used to determine the minimum of the expected value of a quadratic
performance index with respect to the specified free design parameters.
These programs consist of a main program and éight subroutines in
addition to utilizing five standard subroutines from the IBM System/360
Scientific Subroutine Package. The numerical techniques which are
used were described in detail in Chapter 4. The basic function of
each program is explained by comment cards but some additional
information about these programs must be given.

The MAIN program was developed from a program written by Rediess
[31] for minimizing a quadratic performance index for known, determinis-
tic design parameters. Only the basic structure of the original
program has been retained taking advantage of the computational
techniques which were derived in Chapter 4. All the input data

required is read by the main program using the following input cards:

Card no. l: FORMAT (3I4, F8.4, I8, 3F8.4, I4)
N M K STEP ITMAX H DIL EPS KK

Card no. 2: FORMAT (5E20.8)
PAR(1l) . . . PAR(K)

Card no. 3: FORMAT (5E20.8)
ALPHA(Ll) . . . ALPHA (N)

Card no. 4: -‘FORMAT (5E20.8)
R(1) . . . R(KK*KK)

Card no. 5: FORMAT (5E20.8)
SI(l) . . . SI(KK)

o
foe}
i



Explanation of the input parameters:

N = orxder of the system
M = number of zeros in system transfer function
STEP = step size in the direction of the gradient
(defined in Section 4.4)
ITMAX = maximum number of iterations of the gradient procedure
# = minimum improvement in performance index for continuing
the gradient search, expressed as a fraction of the
performance index value
DIL = minimum difference between the predicted and actual
changes in the performance index, specified as a fraction
of the change predicted by the first order approximation
EPS = weighting coefficient multiplying the sensitivity index
KX = number of variable design parameters
PAR(I) = J'.E-ll free design parameter
ALPHA(I) = iEE characteristic coefficient of the model in the
system's n-dimensional space
R(I) = iEE element of the variable parameter covariance matrix
in the general storage mode
8I(1) = iEE variable design parameter.

Note that more than one card may be reguired for the input parameters
on cards no. 2 to no. 5, since only five values can be put on each
card as indicated by the FORMAT statements.

Much of the MAIN program output is self-explanatory except for
the following:

DAP, DXP, DAS, DXS, DAPS, DXPS

which are first derivatives and cross derivatives of a and x,. with

0
respect to p and § as indicated by the notation. These quantities are
only printed for the initial value of p. The quantities

I , DPI , TOX , TQDX

are printed for each iteration of the process and represent,

respectively, the value of the performance index, the change in this
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value as a result of the preceding iteration, the nominal performance
index and the sensitivity index. Thus:

PT = TQX + EPS*TQDX

The function of the MAIN program is to compute the value and the
gradient of the performance index and change the values of the free
design parameters in an iterative manner such as to minimize the value
of the performance index. For this purpose it uses the following
subroutines: subroutine SYST which computes all the closed-loop system
coefficients, the corresponding initial conditions, and the derivatives
of all these quantities with respect to p and . For this purpose it

uses the subroutines ROOTIN, SWEEP, and ROOTS for forming the closed-

loop transfer function polynomials. In its present form the ROOTIN
program has four basic modes, depending on the structure of the block

diagram. These modes correspond to the following input/output paths:

B ¢—
c 1€
mode input/output

1 S, > 54

2 S3 7 8y

3
Sy 7 8y

4 1 7 Ss
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A fifth mode which is useful for including structural modes is

represented by the following block diagram:

“%gg - P B A

—
—p
]

The mode number is specified in the ROOTS subroutine by a statement

of the form:

MODE = I
where I is an integer. This subroutine also contains information
about the cpen-—-loop system roots, which are specified by statements

of the following form:

RPPX(I) = ...
CPPX(I) = ...
RPZX(I) = ...
CRPZX(I) = ...

The first two characters indicate a réal or complex part of the root,
the third character distinguishes poles and zeros and the last character
identifies the block tc which the root belongs. Thus X would be
replaced by A, B, C .. a2tc. The numbers of roots in each block must,
furthermore, be specified by statements of the form:

NPX o

NzZX v
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representing the number of poles and zeros in X. It should be noted
that a complex root pair is counted as a single root. The static
sensitivities of the individual open-loop transfer functions are
similarly specified by statements of the form:

SX = ...
where the second character identifies the block. These open-loop
poles, zeros and static sensitivities can be written as any functions
of the free and variable design parameters. An example of the ROOTS
program is included in this appendix.

The MAIN program uses the STST and RTRT subroutines to compute

the solutions of all the matrix equations which must be solved in
order to obtain the value and gradient of the performance index. These
subroutines are straightforward mechanizations of the matrix sclutionsg
of Chapter 4. Some of the essential computations are made in double
precision for increased accuracy. It may be necessary to change the
time scale of the system eguations in order to prevent an overflow

or underflow during the inversion of the polynomial matrix in STST.

An overflow in the com utation of its determinant indicates that the
response should be slcved down whereas an underflow reguires a speedin
up of the system respcnse. The scaling is achieved by scaling of the
roots in the ROOTS subroutine with the static sensitivities unchanged
unless the block unde; consideration contains pure integration or
differentiation., The coefficients of the model must of course be

scaled by the same amount.
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THORGEIR PALSSON, MIT DEPT. OF AERONAUTICS AND ASTRONAUTICS, 1971
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SUBROUTINE SYST

PURPOSE

COMPUTES THE COEFFYCIENTS OF THE CLOSED LOOP TRANSFER FUNCTION,

THE SYSTEM INITIAL CONDITIONS AND THE REQUIRED DERIVATIVES OF THESE
QUANTITIES WITH RESPECT TO THE DESIGN PARAMETERS

INPUT PARAMETERS

PAR = VECTOR OF FREE DESIGN PARAMETERS
ST = VECTOR OF VARTABLE DESIGN PARAMETERS

OUTPUT PARAMETERS
ACOF CLOSED LOOP DENDMINATOR CDEFFICIENTS

BCOF CLOSED LDOOP NUMERATOR COEFFICIENTS
X0 = SYSTEM INITIAL CONDITION VECTOR

W

SUBROUTINES REQUIRED

INCON
RODTIN

ol e skl ook ok ook ok ko e ool ko dokatotolok e okl skl e ek kol ok gl 30ksol s ol ol ool g ek kol ol ok fofok e ook R ok

SUBROUTINE SYST{ACOF BCOF,X04PAR,ST)
DIMENSION X0(20),PAR(10},SI{10),ACOF{(20) +BCOF(20)
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SUBROUTINE SWEEP

PURPOSE
CALCULATES THE COEFFICIENTS OF A D.E. GIVEN THE ROODTS

USAGE
CALL SWEEP ( NR, RPRy CPRy D,y ND }

DESCRIPTION OF PARAMETERS
NR - NUMBER OF RODOTS IN (COMPLEX PAIR =1 ROOT)
RPR- REAL PART 0OF ROOT
CPR- COMPLEX PART OF ROOT (CONJUGATE NOT REQUIRED)
D - COEFFICIENTS OUT D{1)=PROD(ROOTS) DIND-1)=-SUM(RDOTS)
DIND)=1.0
ND - NUMBER OF COEFFICIENTS OUT

EXTERNAL ROUTINES REQUIRED
ABS

s stelode ook ke kool sk ool okl g o skalolk ookl e ok okl ool ok ofolol okl X ek deokok ok okl ok

SUBROUTINE SWEEP ( NRy; RPR, CPRy Dy ND 1}
DIMENSION DU 20),DD{20};RPR{20},CPR{20)

C-====—==INITIALIZE COEFFIENTS

ND = 1
DO 100 I=1,20
DI1) = 0.
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HERMAN A. REDIESS, MITy OEPV. OF AERONAUTICS AND ASTRONAUTICS
MARCH 1968
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SUBROUTINE SNORM

PURPOSE
COMPUTES THE SUP-NORM OF AN NXN MATRIX OR AN NX1 VECTOR.

USAGE
CALL SNORM{A,B,N,MS)

DESCRIPTION OF PARAMETERS

A - NAME OF MATRIX OR VECTOR

B - NAME OF THE SUP-NORM DF A

N - DIMENSION OF A

MS -~ ONE DIGIT NUMBER FOR STORAGE MODE OF A
0 -~ GENERAL
1 - SYMMETRIC
2 - DIAGONAL OR VECTOR

FUNCTIONS REQUIRED
ABS

Fede e ok e ok ok ek S ool e el e ke ool ool ok ol ook ke e ol el sk et ik el e e ok ol ok ok koo ok ok

SUBRNUTINE SNORM{A; By NsMS)
DIMENSION A(l)
DOUBLE PRECISION A
B=0.
IF{(MS-1)10,11,12
10 L=N*N
GO 7O 18
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AN EXAMPLE OF SUBRNUTINE ROOTS FOR A SIXTH ORDER SYSTEM

REMARK

NOTE THAT THE SIGN CF THE STATIC SENSITIVITY MUST BE REVERSED
FOR ANY BLOCK WHNSE TRANSFER FUNCTION HAS AN ODD NUMBER OF
ZEROES IN THE RIGHT HALF COMPLEX PLANE

ekl Jokde e e ool o e B ool 3k afcoleoke kool v £ el e i kol e kot o ool e o ol i el s e oo etk o oo el ok kel ekl e ko

SUBRDUTINE ROOTS (PAR,SIsMBDE]}

DIMENSION RPPA{20),CPPA(20),RPZA(20),CPZAL(20),PAR(1D)

DIMENSION RPZB{20),CPZB(20}; RPPB(20),CPPBIL2D)

DIMENSION RPPP(10),CPPP[10),RPZP(10},CPZP(10),SI(10)

DIMENSION RPPC(10),CPPC{10),RPIC(10),CPZC(10)

DIMENSION RPPD(10),CPPD(10),RPZD(10),CPZD{1O}

COMMON / ROOT / RPPACPPA,RPZA,CPLA;RPPB,CPPBsRPLBCPIB,RPPCCPPLC,
1RPZC CPZCRPPD,CPPD,RPID,CPZDyRPPPyCPPPRPZIP 4yCPZP3SAySBy SCsSDySPy
2NPASNZAs NPByNIByNPC s NZIC; NPDyNZD, NPP,NZP

MODE=2

NPA=4

NZIA=2

NPR=0

NzZB=1

RPPA{1)=-,01158%SI(1)

CPPA(1)=2.315%S1(1)

RPPA(2)=0.242

CPPA(2)=0.

RPPA(3)==.294

CPPA(31}=0.

RPPA{4)==-,TOT*PAR{3)

CPPA(4)=,TOT*PAR(3)
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